Synthesis of functional magnetic porous SrFe12O19/P(St-DVB-MAA) microspheres by a novel suspension polymerization

Sifang Kong, Jiang Cheng 2 , Yangsheng Liu 1 , Xiufang Wen 2 , Pihui Pi 2 ,  and Zhuoru Yang 2
  • 1 Shenzhen Municipal Key Laboratoy for Cyclic Economy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
  • 2 School of Chemical and Energy Engineering, South China University of Technology, Guangzhou, 501640, China

Abstract

In this study, a novel and effective suspension polymerization has been employed to prepare functional magnetic porous SrFe12O19/P(St-DVB-MAA) microspheres in the presence of bilayer surfactants (sodium dodecyl benzene sulfonate (SDBS) and oleic acid (OA)) coated on micro-size magnetic SrFe12O19. This was achieved by pre-polymerizing the organic phase, which contained co-monomers, porogens and treated magnetic particles, at 65°C for 0.5 h under ultrasound conditions. Aqueous solutions containing a dispersion agent were then added to effect suspension polymerization. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and magnetic property measurement system (MPMS) were used to characterize the functional magnetic porous microspheres. The results show that the microparticles are well shaped with a uniform size distribution of about 0.5 ∼ 0.7 mm and the surfaces of the microspheres have many micro-pores with an average diameter of 0.533 µm. There are carboxyl groups (−COOH) on the surface of the microspheres to the extent of 0.65 mmol g−1, as determined by conductometric titration. According to the XRD spectra, iron oxide consists mainly of SrFe12O19 which reveals hexahedral structure. The content of magnetic SrFe12O19 reaches 17.81% (by mass), and the microspheres have good heat resistance. The magnetic porous microspheres are ferromagnetic with high residual magnetization and coercivity, 21.59 emu g−1 and 4.13 kOe, respectively. The saturation magnetisation is around 42.85 emu g−1.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] X. B. Ding, Z. H. Sun, G. X. Wan, Y. Y. Jiang, React Funct Polym. 38, 11 (1998) http://dx.doi.org/10.1016/S1381-5148(97)00154-5

  • [2] J. Ugelstad, A. Berge, T. Ellingsen, Prog Polym Sci. 17, 526 (1992) http://dx.doi.org/10.1016/0079-6700(92)90017-S

  • [3] P. J. Robinson, P. Dunnil, M. D. Lilly, Biotech Bioeng. 15, 603 (1973) http://dx.doi.org/10.1002/bit.260150318

  • [4] J. D. Ding, F. S. Luo, G. C. Yang, J Huaihai Inst Technol. 10, 36 (2001)

  • [5] S. M. L. C. De, M. C. A. M. Leite, M. A. S. Costa, Mater Lett. 58, 3001 (2004) http://dx.doi.org/10.1016/j.matlet.2004.05.028

  • [6] B. Akkaya, L. Uzun, F. Candan, A. Denizli, Materials Science and Engineering: C 27, 180 (2007) http://dx.doi.org/10.1016/j.msec.2006.04.009

  • [7] P. Xue, H. F. Liu, Acta Polymerica Sinica 1, 64 (2007)

  • [8] H. Yanuz, S. S. Çelebi, Journal of Bioactive and Compatible Polymer 16, 221 (2001) http://dx.doi.org/10.1106/D0HM-XE5H-YBEH-V2Q2

  • [9] S. Akgol, A. Denizli, J. Molecular Catalysis B: Enzymatic 28, 7 (2004) http://dx.doi.org/10.1016/j.molcatb.2003.12.010

  • [10] M. Odabasi, N. Ozkayar, S. Ozkara, S. Unal, A. Denizli, J. Chromatogr. A 826, 50 (2005)

  • [11] B. Akkaya, L. Uzun, F. Candan, A. Denizli, Mater. Sci. Eng. C. 27, 180 (2007) http://dx.doi.org/10.1016/j.msec.2006.04.009

  • [12] C. D. S. M. Luiz, C. A. M. L. Marcia, A. S. C. Marcos, M. S. R. José, F. S. Lilian, R. S. Manoel, Materials Letters 58, 3001 (2004) http://dx.doi.org/10.1016/j.matlet.2004.05.028

  • [13] L. C. Santa Maria, M. A. S. Costa, J. G. M. Soares, S. H. Wang, M.R. Silva, Polymer 46, 11288 (2005) http://dx.doi.org/10.1016/j.polymer.2005.09.055

  • [14] J. B. Jun, S. Y. Uhm, J. H. Ryu, K. D. Suh, Colloids and Surfaces A: Physicochem. Eng. Aspects 260, 157 (2005) http://dx.doi.org/10.1016/j.colsurfa.2005.03.020

  • [15] G. L. Qiu, Y. L. Li, K. Zhao, Enzyme and Microbial Technology 39, 770 (2006) http://dx.doi.org/10.1016/j.enzmictec.2005.12.013

  • [16] T. Mitrelias, J. Palfreyman, Z. Jiang, J. Llandro, J. A. C. Bland, R. M. Sanchez-Martin, M. Bradley, J Magn. Magn. Mater. 310, 2862 (2007) http://dx.doi.org/10.1016/j.jmmm.2006.11.131

  • [17] X.Q. Liu, Z.Y. Ma, J.M. Xing, H.Z. Liu, J. Magn. Magn. Mater. 270, 1 (2004) http://dx.doi.org/10.1016/j.jmmm.2003.07.006

  • [18] X.Q. Liu, M.D. Kaminski, Y. P. Guan, H. T. Chen, H. Z. Liu, A. J. Rosengart, J Magn. Magn. Mater. 306, 248 (2006) http://dx.doi.org/10.1016/j.jmmm.2006.03.049

  • [19] C.S. Lin, C.C. Hwang, T.H. Huang, G.P. Wang, C.H. Peng, Materials Science and Engineering B 139, 24 (2007) http://dx.doi.org/10.1016/j.mseb.2007.01.053

  • [20] C.H. Yan, et al., J. Appl. Polym. Sci. 40, 89 (1990) http://dx.doi.org/10.1002/app.1990.070400108

  • [21] J. Wang, C. Zeng, Journal of Crystal Growth 270, 729 (2004) http://dx.doi.org/10.1016/j.jcrysgro.2004.07.012

OPEN ACCESS

Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.

Search