Synthesis, DNA interaction and antibacterial activities of La(III) and Gd(III) complexes of Schiff base derived from o-vanillin and lysine

Jian-Ping Cheng, Qiu-Yue Lin, Hu Rui-Ding, Wen-Zhong Zhu, Hua-Qiong Li, and Dong-Hang Wang 2
  • 1 Zhejiang Key Laboratory for Reaction Chemistry on Solid Surfaces, Zhejiang Normal University, Jinhua, 321004, China
  • 2 College of Chemical and Life Science, Zhejiang Normal University, Jinhua, 321004, China

Abstract

Two novel complexes, [La(HL)(H2O)2NO3] · NO3 · H2O and [Gd(HL)(H2O)2NO3] · NO3 · H2O, where HL is a Schiff base derived from o-vanillin and lysine, have been synthesized and characterized by elemental analysis, conductivity measurements, IR, 1H NMR and thermogravimetric analyses (TGA). The Schiff base ligand behaves as a tetradentate, coordinating through azomethine nitrogen, phenolic oxygen and two carboxylic oxygen atoms. The interaction of these complexes with calf thymus DNA (CT-DNA) was also investigated by spectrometric titration and viscometric measurements. The faint hypochromism of the complexes in the absorption spectra, the remarkable reduction of fluorescence intensity of ethidium bromide (EB) bound DNA, together with a small decrease in the viscosity of the DNA suggest that a partial intercalation may be the preferred binding mode between these two complexes and DNA. The antibacterial activity testing revealed that the complexes and their precursor Schiff base show a weak to moderate activity against Bacillus subtilis, Staphylococcus aureus and Escherichia coli.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] D.J. Gravert, J.H. Griffin, Inorg. Chem. 35, 4837 (1996) http://dx.doi.org/10.1021/ic960196x

  • [2] Y. Ye, J.M. Hu, L. He, Y.E. Zeng, Vib. Spectrosc. 20, 1 (1999) http://dx.doi.org/10.1016/S0924-2031(98)00077-0

  • [3] R. Rao, A.K. Patra, P.R. Chetana, Polyhedron 26, 5331 (2007) http://dx.doi.org/10.1016/j.poly.2007.07.040

  • [4] U. El-Ayaan, A.A.-M. Abdel-Aziz, S. Al-Shihry, Eur. J. Med. Chem. 42, 1325 (2007). http://dx.doi.org/10.1016/j.ejmech.2007.02.014

  • [5] S. Kashanian, M.B. Gholivand, F. Ahmadia, A. Taravati, A.H. Colagar, Spectrochim. Acta, Part A 67, 472 (2007) http://dx.doi.org/10.1016/j.saa.2006.08.017

  • [6] A.S. Gaballa, M.S. Asker, A.S. Barakat, S.M. Teleb, Spectrochim. Acta, Part A 67, 114 (2007) http://dx.doi.org/10.1016/j.saa.2006.06.031

  • [7] M.Z. Wang, Z.X. Meng, B.L. Liu, G.L. Cai, C.L. Zhang, X.Y. Wang, Inorg. Chem. Commun. 8, 368 (2005) http://dx.doi.org/10.1016/j.inoche.2005.01.023

  • [8] A. Silvestri, G. Barone, G. Ruis, D. Anselmo, S. Riela, V.T. Liveri, J. Inorg. Biochem. 101, 841 (2007) http://dx.doi.org/10.1016/j.jinorgbio.2007.01.017

  • [9] X.Q. He, Q.Y. Lin, R.D. Hu, X.H. Lu, Spectrochim. Acta, Part A 68, 184 (2007) http://dx.doi.org/10.1016/j.saa.2006.11.012

  • [10] B.D. Wang, Z.Y. Yang, Q. Wang, T.K. Cai, P. Crewdson, Bioorg. Med. Chem. 14, 1880 (2006) http://dx.doi.org/10.1016/j.bmc.2005.10.031

  • [11] X.H. Lu, Q.Y. Lin, X.Q. He, J.Q. Feng, J. Chin. Rare Earth Soc. 24, 403 (2006)

  • [12] J. Marmur, J. Mol. Biol. 3, 208 (1961) http://dx.doi.org/10.1016/S0022-2836(61)80047-8

  • [13] C.V. Kumar, E.H. Asuncion, J. Am. Chem. Soc 115, 8547 (1993) http://dx.doi.org/10.1021/ja00072a004

  • [14] S. Satyanarayana, J.C. Dabroniak, J.B. Chaires, Biochem. 31, 9319 (1992) http://dx.doi.org/10.1021/bi00154a001

  • [15] A.H. Collins, Microbiological Methods, 2nd edition (Butterworth, London, 1976)

  • [16] W.J. Geary, Coord. Chem. Rev. 7, 81 (1971) http://dx.doi.org/10.1016/S0010-8545(00)80009-0

  • [17] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition (Wiley, New York, 1986)

  • [18] G.G. Mohameda, C.M. Sharaby, Spectrochim. Acta, Part A 66, 949 (2007) http://dx.doi.org/10.1016/j.saa.2006.04.033

  • [19] N.F. Curtis, Y.M. Curtis, Inorg. Chem. 4, 804 (1965) http://dx.doi.org/10.1021/ic50028a007

  • [20] J.R. Ferraro, Low Frequency Vibrations of Inorganic and Coordination Compounds, 1st edition (Plenum, New York, 1971)

  • [21] J.K. Barton, A.T. Danishefsky, J.M. Golderg, J. Am. Chem. Soc. 106, 2172 (1984) http://dx.doi.org/10.1021/ja00319a043

  • [22] A.M. Pyle, J.P. Rehmann, R. Meshoyrer, C.V. Kumar, N.J. Turro, J.K. Barton, J. Am. Chem. Soc. 111, 3051 (1989) http://dx.doi.org/10.1021/ja00190a046

  • [23] X.W. Liu, J. Li, H. Li, K.C. Zheng, H. Chao, L.N. Ji, J.Inorg.Biochem. 99, 2372 (2005) http://dx.doi.org/10.1016/j.jinorgbio.2005.09.004

  • [24] A. Wolfe, G.H. Shimer, T. Meehan, Biochem. 26, 6392 (1987) http://dx.doi.org/10.1021/bi00394a013

  • [25] R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B.U. Nair, Biochim. Biophys. Acta 1475, 157 (2000)

  • [26] J. R. Lakowicz, G. Webber, Biochem. 12, 4161 (1973) http://dx.doi.org/10.1021/bi00745a020

OPEN ACCESS

Journal + Issues

Search