Synthesis and characterization of nanosized NiO2 and NiO using Triton® X-100

Mohammad Kooti 1  and Mehdi Jorfi 1
  • 1 Department of Chemistry, College of Science, Shahid Chamran University, 65355-141, Ahvaz, Iran

Abstract

Nanosized NiO2 particles with an average diameter of 15 nm are prepared by treating of Ni(NO3)2 · 6H2O with an aqueous solution of KClO in the presence of Triton® X-100. This black fine powder of nickel peroxide was characterized by XRD diffraction, energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The as-prepared NiO2 can be easily transformed to nanosized NiO merely by washing it with acetone. The obtained NiO has an average diameter of 40 nm and was characterized by the same means used for NiO2. The nanoparticles of NiO2 and NiO were obtained in high yields and purities.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] C. Wieser, C.B. Dieleman, D. Matt, Coord. Chem. Rev. 165, 93 (1997)

  • [2] B. Moulton, M.J. Zaworotko, Chem. Rev. 101, 1629 (2001) http://dx.doi.org/10.1021/cr9900432

  • [3] S. Kitagawa, R. Kitaura, S.I. Naro, Angew. Chem. Int. Ed. 43, 2334 (2004) http://dx.doi.org/10.1002/anie.200300610

  • [4] J.W. Ko, K.S. Min, M.P. Suh, Inorg. Chem. 41, 2151 (2002) http://dx.doi.org/10.1021/ic011281u

  • [5] X. Li, R. Cao, Q. Sun, Q. Shi, D.Q. Yuan, D.F. Sun, W.H. Bi, M.E. Hong, Cryst. Groth Des. 4, 255 (2004) http://dx.doi.org/10.1021/cg034156x

  • [6] C.N.R. Rao, N. Srinibasan, R. Vaidhyanathan, Angew. Chem. Int. Ed. 43, 1466 (2004) http://dx.doi.org/10.1002/anie.200300588

  • [7] D. Shigehito, K. Akamatsu, T. Yano, M. Mizuhata, A. Kajinami, J. Mater. Chem. 818, 1865 (1998)

  • [8] Y. Wang, Q.Z. Qin, J. Electrochem. Soc. 149, A873 (2002) http://dx.doi.org/10.1149/1.1481715

  • [9] C. Wang, Y. Hu, Y. Quian, G. Zhao, Nanostruct. Mater. 7, 421 (1996) http://dx.doi.org/10.1016/0965-9773(96)00016-5

  • [10] I.W. Lenggoro, Y. Itoh, N. Iida, K. Okuyama, Mater. Res. Bull. 38, 1819 (2003) http://dx.doi.org/10.1016/j.materresbull.2003.08.005

  • [11] F. Svegl, B. Orel, I.G. Svegl, V. Kaucic, Electrochim. Acta 45, 4359 (2000) http://dx.doi.org/10.1016/S0013-4686(00)00543-0

  • [12] D.H. Chen, C.H. Hsieh, J. Mater. Chem. 12, 2412 (2002) http://dx.doi.org/10.1039/b200603k

  • [13] S.W. Oh, H.J. Bang, Y.C. Bae, Y.K. Sun, J. Power Sources 173 (2007)

  • [14] X. Chen, X. Hu, J. Feng, Nanostruct. Mater. 6, 309 (1995) http://dx.doi.org/10.1016/0965-9773(95)00059-3

  • [15] B. Pejova, T. Kocareva, M. Najadoski, I. Grozdanor, Appl. Surf. Sci. 165, 271 (2000) http://dx.doi.org/10.1016/S0169-4332(00)00377-9

  • [16] W. Xing, F. Li, Z.F. Yan, G.Q. Lu, J. Power Sources 134, 324 (2004) http://dx.doi.org/10.1016/j.jpowsour.2004.03.038

  • [17] Y. Lin, T. Xie, B. Cheng, B. Geng, L. Zhang, Chem. Phys. Lett. 28, 521 (2003) http://dx.doi.org/10.1016/j.cplett.2003.09.066

  • [18] K.C. Liu, M.A. Anderson, J. Electrochem. Soc. 143, 124 (1996) http://dx.doi.org/10.1149/1.1836396

  • [19] S.F. Wang, L.Y. Shi, X. Feng, S.R. Ma, Mater. Lett. 61, 1549 (2007) http://dx.doi.org/10.1016/j.matlet.2006.07.076

  • [20] X. Deng, Z. Chen, Matter. Lett. 58, 276 (2004) http://dx.doi.org/10.1016/S0167-577X(03)00469-5

  • [21] K. Nakagawa, R. Konake, T. Nakata, J. Org. Chem. 17, 1797 (1962)

  • [22] M.V. George, K.S. Balachandran, Chem. Rev. 75, 491 (1975) http://dx.doi.org/10.1021/cr60296a004

  • [23] H. Ji, T. Wang, M. Zhang, Y. She, L. Wang, Appl. Catal. A: General 282, 25 (2005) http://dx.doi.org/10.1016/j.apcata.2004.11.043

  • [24] J. M. Grill, J.W. Ogle, S. A. Miller, J. Org. Chem. 71, 9291 (2006) http://dx.doi.org/10.1021/jo0612574

  • [25] Y. Sun, B. Gaten, B. Mayers, V. Xia, Nano Lett. 2, 167 (2002)

  • [26] C. Faure, C. Delmas, M. Fouassier, J. Power Sources 35, 279 (1991) http://dx.doi.org/10.1016/0378-7753(91)80112-B

  • [27] T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Solid State Sci. 8, 425 (2006) http://dx.doi.org/10.1016/j.solidstatesciences.2005.12.005

OPEN ACCESS

Journal + Issues

Search