Large cation model of dissociative reduction of electrochromic WO3−x films

Maria Hepel and Haley Redmond 1
  • 1 Department of Chemistry, State University of New York at Potsdam, Potsdam, NY, 13676, USA
  • 2 Department of Chemistry, University of Buffalo, Buffalo, NY, 14214, USA

Abstract

Studies of dissociative reduction processes of electrochromic WO3−x films were conducted to: (i) evaluate their utility for electroetching and (ii) determine their fundamental mechanistic features to reduce or eliminate their occurrence in normal optical switching and modulation operation of WO3−x films. We have found that while the small intercalating cations stabilize WO3−x structure, the large nonintercalating surfactant cations (Et4N+, CtMe3N+) contribute to the dissociative reduction. While these cations do not affect WO3−x structure of anodically protected films (E > 0.2 V), they cause surface lattice polarization on electron injection to the conduction band of WO3−x at lower electrode potentials, in the absence of intercalating cations. We have found that this process is limited to the surface and no structural damage occurs to the underlying film. The mechanistic aspects of the process have been discussed on the basis of experimental voltammetric and electrochemical quartz crystal nanogravimetric (EQCN) measurements and ab initio quantum mechanical calculations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Y.S. Krasnov, S.V. Volkov, G.Y. Kolbasov, J. Non-Crystall. Solids 352, 3995 (2006) http://dx.doi.org/10.1016/j.jnoncrysol.2006.08.007

  • [2] I. Bedja, S. Hotchandani, P.V. Kamat, J. Phys. Chem. B 97, 11064 (1993) http://dx.doi.org/10.1021/j100144a027

  • [3] M. Hepel, H. Redmond, Electrochim. Acta 52, 3541 (2007) http://dx.doi.org/10.1016/j.electacta.2006.10.032

  • [4] S. Babinec, Solar Energy Mater. Solar Cells 25, 269 (1992) http://dx.doi.org/10.1016/0927-0248(92)90073-X

  • [5] R. Bachelor, M. Burdis, J. Siddle, J. Electrochem. Soc. 143, 1050 (1996) http://dx.doi.org/10.1149/1.1836580

  • [6] S.K. Deb, Philos. Mag. 27, 801 (1973) http://dx.doi.org/10.1080/14786437308227562

  • [7] P. Delichere, P. Falaras, M. Froment, A. Hugot-Le-Goff, Thin Solid Films 161, 35 (1988) http://dx.doi.org/10.1016/0040-6090(88)90233-7

  • [8] B.W. Faughnan, R.S. Crandall, P.M. Heyman, RCA Rev. 36, 177 (1975)

  • [9] T. Maruyama, S. Arai, J. Electrochem. Soc. 141, 1021 (1994) http://dx.doi.org/10.1149/1.2054834

  • [10] T. Maruyama, T. Kanagawa, J. Electrochem. Soc. 141, 2435 (1994) http://dx.doi.org/10.1149/1.2055138

  • [11] E.A. Mulenkamp, J. Electrochem. Soc. 144, 1664 (1997) http://dx.doi.org/10.1149/1.1837657

  • [12] P.K. Shen, J. Syed-Bkhari, A.C.C. Tseung, J. Electrochem. Soc. 138, 1023 (1992)

  • [13] I. Shiyanovskaya, M. Hepel, J. Electrochem. Soc. 145, 1023 (1998) http://dx.doi.org/10.1149/1.1838382

  • [14] I. Shiyanovskaya, M. Hepel, E. Tewksbury, J. New Mater. Electrochem. Systems 3, 241 (2000)

  • [15] Shiyanovskaya, M, Hepel, Hydrated Transition Metal Oxide Films for Reversible Switching in Near IR Region, in Materials for optical Limiting II, R. Sutherland, R. Pachter, P. Hood, D. Hagan, K. Lewis, J. Perry (Eds.) (San Francisco, CA, 1997) Mat. Res. Soc. Symp. Proceedings, 479, 185 (1997)

  • [16] I. Shiyanovskaya, M. Hepel, J. Electrochem. Soc. 146, 243 (1999) http://dx.doi.org/10.1149/1.1391593

  • [17] I. Shiyanovskaya, M. Hepel, J. Electrochem. Soc. 145, 3981 (1998) http://dx.doi.org/10.1149/1.1838902

  • [18] C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B 105, 936 (2001) http://dx.doi.org/10.1021/jp002232q

  • [19] K. Rajeshwar, J. Ibanez, Environmental Electrochemistry (Academic Press, New York, 1997)

  • [20] M. Hepel, S. Hazelton, Electrochim. Acta 50, 5278 (2005) http://dx.doi.org/10.1016/j.electacta.2005.03.067

  • [21] M. Hepel, J. Luo, Electrochim. Acta 47, 729 (2001) http://dx.doi.org/10.1016/S0013-4686(01)00753-8

  • [22] J. Luo, M. Hepel, Electrochim. Acta 46, 2913 (2001) http://dx.doi.org/10.1016/S0013-4686(01)00503-5

  • [23] H. Habazaki, Y. Hayashi, H. Konno, Electrochim. Acta 47, 4181 (2002) http://dx.doi.org/10.1016/S0013-4686(02)00435-8

  • [24] C.G. Granquist, Handbook of Inorganic Electrochromic Materials (Elsevier, New York, 1995)

  • [25] C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc. 123, 10639 (2001) http://dx.doi.org/10.1021/ja011315x

  • [26] S. Djerad, L. Tifouti, M. Crocoll, W. Wesweiler, J. Mol. Catal. A Chem. 208, 257 (2004) http://dx.doi.org/10.1016/j.molcata.2003.07.016

  • [27] M. Li, W. Gao, A. Posadas, C.H. Ahn, E. Altman, J. Phys. Chem. B 108, 15259 (2004) http://dx.doi.org/10.1021/jp047383y

  • [28] S. Ma, B.G. Frederick, J. Phys. Chem. B 107, 11960 (2003) http://dx.doi.org/10.1021/jp035383c

  • [29] P.J. Kulesza, L.R. Faulkner, J. Electroanal. Chem. 259, 81 (1989) http://dx.doi.org/10.1016/0022-0728(89)80040-3

  • [30] M.I. Borzenko, M. Chojak, P.J. Kulesza, G.A. Tsirlina, O.A. Petrii, Electrochim. Acta 48, 3797 (2003) http://dx.doi.org/10.1016/S0013-4686(03)00513-9

  • [31] W. Tze, M.I. Borzenko, G.A. Tsirlina, O.A. Petrii, Russ. J. Electrochem. 38, 1250 (2002) http://dx.doi.org/10.1023/A:1021166230036

  • [32] E.V. Timofeeva, M.I. Borzenko, G.A. Tsirlina, E.A. Astafev, O.A. Petrii, J. Solid State Electrochem. 8, 778 (2004) http://dx.doi.org/10.1007/s10008-004-0545-6

  • [33] O.F. Schrimer, V. Wittwer, B. Baur, K.S. Kang, Electrochim. Acta 22, 751 (1977) http://dx.doi.org/10.1016/0013-4686(77)80031-5

  • [34] A.I. Gavrylyuk, Electrochim. Acta 44, 3027 (1999) http://dx.doi.org/10.1016/S0013-4686(99)00017-1

  • [35] S.I.C.d. Torresi, A. Gorenstein, R.M. Torresi, M.V. Vazquez, J. Electroanal. Chem. 318, 131 (1991) http://dx.doi.org/10.1016/0022-0728(91)85299-5

  • [36] D. Dini, S. Passerini, B. Scrosati, F. Decker, Solar Energy Mater. Solar Cells 79, 213 (2003)

  • [37] J. Scarminio, Solar Energy Mater. Solar Cells 79, 357 (2003) http://dx.doi.org/10.1016/S0927-0248(02)00472-5

  • [38] M. Hepel, Electrode-Solution Interface Studied with Electrochemical Quartz Crystal Nanobalance, In: A. Wieckowski (Ed.), Interfacial Electrochemistry. Theory, Experiment and Applications (Marcel Dekker Inc., New York, 1999) 599

  • [39] M. Hepel, E. Cateforis, Electrochim. Acta 46, 3801 (2001) http://dx.doi.org/10.1016/S0013-4686(01)00667-3

  • [40] M. Hepel, I. Dela, T. Hepel, J. Luo, C.J. Zhong, Electrochim. Acta 52, 5529 (2007) http://dx.doi.org/10.1016/j.electacta.2007.01.056

  • [41] G. Sauerbrey, Z. Phys. 155, 206 (1959) http://dx.doi.org/10.1007/BF01337937

  • [42] S. Bruckenstein, M. Shay, Electrochim. Acta 30, 1295 (1985) http://dx.doi.org/10.1016/0013-4686(85)85005-2

  • [43] M. Hepel, J. Chem. Educ. 85, 125 (2008) http://dx.doi.org/10.1021/ed085p125

  • [44] P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2004)

  • [45] W.J. Hehre, L. Radon, P.R. Schleyer, J.A. Pople, Ab-initio Molecular Orbital Theory (Wiley, New York, 1985)

  • [46] C.V. Ramana, S. Utsunomiya, R.C. Ewing, C.M. Julien, U. Becker, J. Phys. Chem. B 110, 10430 (2006) http://dx.doi.org/10.1021/jp056664i

  • [47] M.S. Wittingham, Solid State Ionics 168, 255 (2004) http://dx.doi.org/10.1016/j.ssi.2003.08.056

  • [48] Y.S. Krasnov, G.Y. Kolbasov, Electrochim. Acta 49, 2425 (2004) http://dx.doi.org/10.1016/j.electacta.2004.01.020

  • [49] S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, E.W. McFarland, Adv. Mater. 15, 1269 (2003) http://dx.doi.org/10.1002/adma.200304669

  • [50] M. Deepa, Nanotechnology 17, 2625 (2006) http://dx.doi.org/10.1088/0957-4484/17/10/030

OPEN ACCESS

Journal + Issues

Search