Simultaneous kinetic spectrophotometric determination of Cu(II), Co(II) and Ni(II) using partial least squares (PLS) regression

Morteza Bahram 1 , Khalil Farhadi 1 , Abbas Afkhami 2 , Donya Shokatynia 1 ,  and Farzin Arjmand 1
  • 1 Department of Chemistry, Faculty of Science, Urmia University, Urmia, 57153-165, Iran
  • 2 Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 651740, Iran

Abstract

A partial least squares (PLS-1) calibration model based on kinetic—spectrophotometric measurement, for the simultaneous determination of Cu(II), Ni(II) and Co(II) ions is described. The method was based on the difference in the rate of the reaction between Co(II), Ni(II) and Cu(II) ions with 1-(2-pyridylazo)2-naphthol in a pH 5.8 buffer solution and in micellar media at 25°C. The absorption kinetic profiles of the solutions were monitored by measuring the absorbance at 570 nm at 2 s intervals during the time range of 0–10 min after initiation of the reaction. The experimental calibration matrix for the partial least squares (PLS-1) model was designed with 30 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.1-2 μg mL−1 for each cation. The proposed method was successfully applied to the simultaneous determination of Cu(II), Ni(II) and Co(II) ions in water and in synthetic alloy samples.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Afkhami, M. Bahram, Spectrochim. Acta Part A 60, 181 (2004) http://dx.doi.org/10.1016/S1386-1425(03)00192-6

  • [2] M. Otto, M. Wegscheider, Anal. Chem. 57, 63 (1985) http://dx.doi.org/10.1021/ac00279a020

  • [3] E. Gomez, J.M. Estela, V. Cerda, M. Blanco, Fresenius J. Anal. Chem. 342, 318 (1992) http://dx.doi.org/10.1007/BF00322177

  • [4] R.E. Taljard, J.F. Staden, Anal. Chim. Acta 366, 177 (1998) http://dx.doi.org/10.1016/S0003-2670(98)00099-3

  • [5] E. Engstrom, I. Jonebring, B. Karlberg, Anal. Chim. Acta 371, 227 (1999) http://dx.doi.org/10.1016/S0003-2670(98)00352-3

  • [6] A. Gallardo Melgarejo, Analyst, 114, 109 (1989) http://dx.doi.org/10.1039/an9891400109

  • [7] K. Zarei, M. Atabati, M. Malekshabani, Anal. Chim. Acta 556, 247 (2006) http://dx.doi.org/10.1016/j.aca.2005.06.051

  • [8] D. Perez-Bendito, M. Silva, Kinetic Methods in Analytical Chemistry (Ellis Horwood, Chichester, 1988)

  • [9] A.R. Zarei, A. Afkhami, N. Sarlak, J. AOAC Int. 88, 1695 (2005)

  • [10] A. Afkhami, T. Madrakian, A.R. Zarei, Anal. Sci. 17, 1199 (2001) http://dx.doi.org/10.2116/analsci.17.1199

  • [11] A. Afkhami, A.R. Zarei, Talanta 60, 63 (2003) http://dx.doi.org/10.1016/S0039-9140(03)00037-7

  • [12] A. Afkhami, A.R. Zarei, Anal. Sci. 20, 1199 (2004) http://dx.doi.org/10.2116/analsci.20.1199

  • [13] A. Afkhami, A.R. Zarei, Anal. Sci. 20, 1711 (2004) http://dx.doi.org/10.2116/analsci.20.1711

  • [14] A. Afkhami, M. Bahram, Anal. Chim. Acta 526, 211 (2004) http://dx.doi.org/10.1016/j.aca.2004.09.064

  • [15] A. Afkhami, T. Madrakian, M. Bahram, J. Hazard. Mater. 123, 250 (2005) http://dx.doi.org/10.1016/j.jhazmat.2005.04.009

  • [16] A. Afkhami, M. Bahram, Talanta 68, 1148 (2006) http://dx.doi.org/10.1016/j.talanta.2005.07.017

  • [17] A. Afkhami, T. Madrakian, R. Moein, M. Bahram, Talanta 72, 1847 (2007) http://dx.doi.org/10.1016/j.talanta.2007.02.023

  • [18] A. Gáspár, J. Posta, B. Mihály, C. Sogor, Microchem J. 58, 245 (1998) http://dx.doi.org/10.1006/mchj.1997.1551

  • [19] J. Havel, J. Jiménez, R.D. Bautista, J.J. Arias León, Analyst 118, 1355 (1993) http://dx.doi.org/10.1039/an9931801355

  • [20] B.M. Quencer, S.R. Crouch, Crit. Rev. Anal. Chem. 24, 243 (1993) http://dx.doi.org/10.1080/10408349308050554

  • [21] A.R. Coscione, J.C. de Andeade, R.J. Poppi, C. Mello, B. van Raij, M.F. de Abreu, Anal. Chim. Acta 423, 31 (2000) http://dx.doi.org/10.1016/S0003-2670(00)01102-8

  • [22] M. Martens, T. Naes, Multivariate Calibration (Wiley, New York, 1989)

  • [23] S. Wold, P. Geladi, K. Esbensen, J. Ochman, J. Chemom. 41, 1 (1987)

  • [24] P. Geladi, B.R. Kowalski, Anal. Chim. Acta 185, 1 (1986) http://dx.doi.org/10.1016/0003-2670(86)80028-9

  • [25] D.M. Haaland, E.V. Thomas, Anal. Chem. 60, 1193 (1988) http://dx.doi.org/10.1021/ac00162a020

  • [26] D.M. Haaland, E.V. Thomas, Anal. Chem. 60, 1202 (1988) http://dx.doi.org/10.1021/ac00162a021

  • [27] A. Afkhami, M. Bahram, A.R. Zarei, Microchim. Acta 148, 317 (2004) http://dx.doi.org/10.1007/s00604-004-0281-8

  • [28] H. Abdollahi, Anal. Chim. Acta 442, 327 (2001) http://dx.doi.org/10.1016/S0003-2670(01)01174-6

  • [29] M. Macit, H. Bati, B. Bati, Turk. J. Chem. 24, 81 (2000)

  • [30] J.R. Davis, Metals Handbook, Machining (Prepared under the direction of the ASM international handbook committee), 9th edition, (ASM International, Materials Park, Ohio, 1989) vol. 16, 83

OPEN ACCESS

Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.

Search