Synthesis of Co3O4 nanoparticles by oxidation-reduction method and its magnetic characterization

T. Ozkaya 1 , A. Baykal 1 , Y. Koseoğlu 2 ,  and H. Kavas 2
  • 1 Department of Chemistry, Fatih University, Hadimköy, 34500, Istanbul, Turkey
  • 2 Department of Physics, Fatih University, Hadimköy, 34500, Istanbul, Turkey

Abstract

Without any surfactant, antiferromagnetic Co3O4 nanoparticles were synthesized successfully for the first time by means of an oxidation-reduction method with cobalt sulfate as starting material, which was oxidized to cobalt salt by NaNO3 after alkalinizing with NaOH. Morphological, structural, spectroscopic and magnetic characterization of the product were done by SEM, TEM, XRD, and VSM, respectively. The average crystallite size (on the base of line profile fitting method), D and σ, is estimated as 30 ± 6 nm. Some anomalous magnetic properties and their enhanced effect have been observed in Co3O4 antiferromagnetic nanocrystallites, including a bias field, coercivity, permanent magnetic moments and an open loop. These phenomena are attributed to the unidirectional anisotropy which is caused by the exchange coupling between AFM and FM layers, the existence of the spin glass like surface spins of Co3O4 nanoparticles due to size effects and surface-area effect.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] G. Busca, F. Trifiro, A. Vaccari, Langmuir 6, 1440 (1990) http://dx.doi.org/10.1021/la00099a002

  • [2] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000) http://dx.doi.org/10.1038/35035045

  • [3] Z. Yuan, F. Huang, C. Feng, J. Sun, Y. Zhou, Mater. Chem. Phys. 79, 1 (2003) http://dx.doi.org/10.1016/S0254-0584(02)00442-X

  • [4] M. Ando, T. Kobayashi, S. Lijima, M.J. Haruta, Mater. Chem. 7, 1779 (1997) http://dx.doi.org/10.1039/a700125h

  • [5] T. Maruyama, S.J. Arai, J. Electrochem. Soc. 143, 1383 (1996) http://dx.doi.org/10.1149/1.1836646

  • [6] S. Weichel, P.J. Moller, Surf. Sci. 399, 219 (1998) http://dx.doi.org/10.1016/S0039-6028(97)00820-0

  • [7] K. Kamata, Y. Lu, Y. Xia, J. Am. Chem. Soc. 125, 2384 (2003) http://dx.doi.org/10.1021/ja0292849

  • [8] Y. Wang, L. Cai, Y. Xia, Adv. Mater. 17, 473 (2005) http://dx.doi.org/10.1002/adma.200401416

  • [9] M. Ando, T. Kobayashi, S. Iijima, M. Haruta, J. Mater. Chem. 7(9), 1779 (1997) http://dx.doi.org/10.1039/a700125h

  • [10] F. Svegl, B. Orel, M.G. Hutchins, K. Kalcher, J. Electrochem. Soc. 143, 1532 (1996) http://dx.doi.org/10.1149/1.1836675

  • [11] T. Sugimoto, E. Matijevic, J. Inorg. Nucl. Chem. 41, 165 (1979) http://dx.doi.org/10.1016/0022-1902(79)80506-0

  • [12] Y.J. Mergler, J. Hoebink, B.E. Nieuwenhuys, J. Catal. 167, 305 (1997) http://dx.doi.org/10.1006/jcat.1997.1599

  • [13] H. Hamada, Y. Kintaichi, M. Inaba, M. Tabata, T. Yoshinari, H. Tsuchida, Catal. Today 29, 53 (1996) http://dx.doi.org/10.1016/0920-5861(95)00263-4

  • [14] A.S.K. Sinha, V. Shankar, J. Chem. Eng. Biochem. Eng. 52, 115 (1993) http://dx.doi.org/10.1016/0923-0467(93)85024-P

  • [15] C. Mocuta, A. Barbier, G. Renaud, Appl. Surf. Sci. 56, 162 (2002)

  • [16] F. Svegl, B. Orel, I. Grabec-Svegl, V. Kaucic, Electrochim. Acta 45, 4359 (2000) http://dx.doi.org/10.1016/S0013-4686(00)00543-0

  • [17] M.E. Baydi, G. Poillerat, J.-L. Rehspringer, J.L. Gautier, J.-F. Koenig, P. Chartier, J. Solid State Chem. 109, 281 (1994) http://dx.doi.org/10.1006/jssc.1994.1105

  • [18] Y.H. Ni, X.W. Ge, Z.C. Zhang, H.R. Liu, Z.L. Zhu, Q. Ye, Mater. Res. Bull. 36, 2383 (2001) http://dx.doi.org/10.1016/S0025-5408(01)00739-5

  • [19] C. Pirovano, S. Trasatti, J. Electroanal. Chem. 180(1–2), 171 (1984) http://dx.doi.org/10.1016/0368-1874(84)83578-9

  • [20] S. Sakamoto, M. Yoshinaka, K. Hirota, O. Yamaguchi, J. Am. Ceram. Soc. 80, 267 (1997) http://dx.doi.org/10.1111/j.1151-2916.1997.tb02824.x

  • [21] A.U. Mane, K. Shalini, A. Wohlfart, A. Devi, S.A. Shivashankar, J. Cryst. Growth 240, 157 (2002) http://dx.doi.org/10.1016/S0022-0248(02)00860-6

  • [22] K. Shalini, A.U. Mane, S.A. Shivashankar, M. Rajeswari, S. Choopun, J. Cryst. Growth 231, 242 (2001) http://dx.doi.org/10.1016/S0022-0248(01)01493-2

  • [23] M. Burriel, G. Garcia, J. Santiso, A. Abrutis, Z. Saltyte, A. Figueras, Chem. Vapor Depos. 11, 106 (2005) http://dx.doi.org/10.1002/cvde.200406320

  • [24] R.N. Singh, J.F. Koenig, G. Poillerat, P. Chartier, J. Electrochem. Soc. 137, 1480 (1990)

  • [25] M. Hamdani, J.F. Koenig, P. Chartier, J. Appl. Electrochem. 18, 568 (1988) http://dx.doi.org/10.1007/BF01022252

  • [26] R. Xu, H.C. Zeng, J. Phys. Chem. B 107, 926 (2003) http://dx.doi.org/10.1021/jp021094x

  • [27] B.B. Lakshmi, C.J. Patrissi, C.R. Martin, Chem. Mater. 9, 2544 (1997) http://dx.doi.org/10.1021/cm970268y

  • [28] T. Ozkaya, A. Baykal, H. Kavas, Y. Köseoğlu, M.S. Toprak, Physica B 403, 3760 (2008). http://dx.doi.org/10.1016/j.physb.2008.07.002

  • [29] W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, Y. Liu, Materials Letters 60, 2998 (2006) http://dx.doi.org/10.1016/j.matlet.2006.02.032

  • [30] T. Ozkaya, “Synthesis and Characterization of M3O4 ((m = Fe, Co, Mn) Magnetic nanoparticles”, Master Thesis, Fatih University, İstanbul-Turkey, July (2008)

  • [31] P.H. Refait, J.M.R. Genin, Corros. Sci. 34, 797 (1993) http://dx.doi.org/10.1016/0010-938X(93)90101-L

  • [32] A.A. Olowe, J.M.R. Genin, Corros. Sci. 32, 965 (1991) http://dx.doi.org/10.1016/0010-938X(91)90016-I

  • [33] T. Wejrzanowski, R. Pielaszek, A. Opalinska, H. Matysiak, W. Łojkowski, K.J. Kurzydłowski, Applied Surface Science 253, 204 (2006) http://dx.doi.org/10.1016/j.apsusc.2006.05.089

  • [34] R. Pielaszek, Analytical expression for diffraction line profile for polydispersive powders, Appl. Crystallography (Proceedings of the XIX Conference, Krakow, Poland, 2003) 43

  • [35] H.K. Lin, H.C. Chiu, H.C. Tsai, Catal. Lett. 88, 169 (2003) http://dx.doi.org/10.1023/A:1024013822986

  • [36] St.G. Christokova, M. Stayonava, M. Georgieva, D. Mehandjiev, Mater. Chem. Phys. 60, 39 (1999) http://dx.doi.org/10.1016/S0254-0584(99)00053-X

  • [37] Y. Chen, Y. Zhang, S. Fu, Mater. Lett. 61, 701 (2007) http://dx.doi.org/10.1016/j.matlet.2006.05.046

  • [38] F. Kurtulu§, H. Güler, Inorganic Materials 41(5), 564 (2005)

  • [39] W.L. Roth, J. Phys. Chem. Solids 25, 1 (1964) http://dx.doi.org/10.1016/0022-3697(64)90156-8

  • [40] T. Ambrose, C.L. Chien, Phys. Rev. Lett. 76, 1743 (1996) http://dx.doi.org/10.1103/PhysRevLett.76.1743

  • [41] R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997) http://dx.doi.org/10.1103/PhysRevLett.79.1393

  • [42] L. Neel, in: C. Dewitt, B. Dreyfus, and P.D. de Gennes (Eds.), Low Temperature Physics (Gordon and Beach, New York, 1962) 413

  • [43] C. Nethravathi, S. Sen, N. Ravishankar, M. Rajamathi, C. Pietzonka, Bernd Harbrecht, J. Phys. Chem. B 109, 11468 (2005) http://dx.doi.org/10.1021/jp050725v

  • [44] E.L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, F. Schuth, Nano Letters 6, 2977 (2006) http://dx.doi.org/10.1021/nl060528n

  • [45] A. Salah, J. Makhlouf, J. Magn. Magn. Mater. 246, 184 (2002) http://dx.doi.org/10.1016/S0304-8853(02)00050-1

OPEN ACCESS

Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.

Search