Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 21, 2009

The effects of copper ions on the catalytical degradation of azo dye acid chrome blue K

  • Xiang-Hu Liu EMAIL logo , Jing Lin , Hong-Wen Gao and Ya-Lei Zhang
From the journal Open Chemistry

Abstract

The effects of Cu2+ on the catalytical degradation of acid chrome blue K (ACBK) in UV-TiO2 and H2O2 processes were studied. In these two processes, Cu2+ markedly depressed the catalytical degradation of ACBK by its interaction with ACBK. Through this interaction, the new complex Cu(ACBK)2 formed. The formation of this new complex was favorable to protect some groups in ACBK from the oxidation of reactive oxygen generated in UV-TiO2 and H2O2 processes, and consequently had suppressing effects on degradation of ACBK. In addition, Cu2+ also inhibited the degradation of ACBK in UV-TiO2 process by influencing the adsorption of ACBK on the surface of TiO2 particles.

[1] G. Tchobanoglous, F.L. Burton, Wastewater Engineering: Treatment, Disposal and Reuse, 3rd edition (McGraw-Hill, New York, 1991) Search in Google Scholar

[2] R. Ganesh, G.D. Boardman, D. Michelson, Water Res. 28, 1367 (1994) http://dx.doi.org/10.1016/0043-1354(94)90303-410.1016/0043-1354(94)90303-4Search in Google Scholar

[3] E.J. Weber, R.L. Adams, Environ. Sci. Technol. 29, 1163 (1995) http://dx.doi.org/10.1021/es00005a00510.1021/es00005a005Search in Google Scholar

[4] E. Herrera, A. Lopez, G. Mascolo, P. Albrs, J. Kiwi, Water Res. 35, 750 (2001) http://dx.doi.org/10.1016/S0043-1354(00)00295-510.1016/S0043-1354(00)00295-5Search in Google Scholar

[5] K.Q. Wu, Y.D. Xie, J.C. Zhao, H. Hidaka, J. Mol. Catal. A-Chem. 144, 77 (1999) http://dx.doi.org/10.1016/S1381-1169(98)00354-910.1016/S1381-1169(98)00354-9Search in Google Scholar

[6] K.Q. Wu, T.Y. Zhang, J.C. Zhao, H. Hidaka, Chem. Lett. 8, 857 (1998) http://dx.doi.org/10.1246/cl.1998.85710.1246/cl.1998.857Search in Google Scholar

[7] F. Herrera, J. Kiwi, A. Lopez, V. Nadtochenko, Environ. Sci. Technol. 33, 3145 (1999) http://dx.doi.org/10.1021/es980995+10.1021/es980995+Search in Google Scholar

[8] J. Bandara, J. Kiwi, New J. Chem. 23, 717 (1999) http://dx.doi.org/10.1039/a902425e10.1039/a902425eSearch in Google Scholar

[9] H. Kyung, J. Lee, W.Y. Choi, Environ. Sci. Technol. 39, 2376 (2005) http://dx.doi.org/10.1021/es049278810.1021/es0492788Search in Google Scholar PubMed

[10] C.C. Chen, X.Z. Li, W.H. Ma, J.C. Zhao, H. Hidaka, J. Phys. Chem. B. 106, 318 (2002) http://dx.doi.org/10.1021/jp011902510.1021/jp0119025Search in Google Scholar

[11] G. Colon, M.C. Hidalgo, J.A. Navio, Langumir 17, 7174 (2001) http://dx.doi.org/10.1021/la010778d10.1021/la010778dSearch in Google Scholar

[12] R.A. Burns, J.C. Crittenden, D.W. Hand, V.H. Selzer, L.L. Sutter, S.R. Salman, J. Environ. Engin-ASCE 125, 77 (1999) http://dx.doi.org/10.1061/(ASCE)0733-9372(1999)125:1(77)10.1061/(ASCE)0733-9372(1999)125:1(77)Search in Google Scholar

[13] M.I. Litter, Appl. Catal. B-Environ. 23, 89 (1999) http://dx.doi.org/10.1016/S0926-3373(99)00069-710.1016/S0926-3373(99)00069-7Search in Google Scholar

[14] Y.C. Tang, C. Hu, Y.Z. Wang, Envion. Chem. 22, 364 (2003) Search in Google Scholar

[15] E.C. Butler, A.P. Davis, J. Photochem. Photobiol. A: Chem. 70, 273 (2000) http://dx.doi.org/10.1016/1010-6030(93)85053-B10.1016/1010-6030(93)85053-BSearch in Google Scholar

[16] K. Selvam, M. Murugannandham, I. Muthuvel, M. Swaminathan, Chem. Engin. J. 128, 51 (2007) http://dx.doi.org/10.1016/j.cej.2006.07.01610.1016/j.cej.2006.07.016Search in Google Scholar

[17] E. Pelizzetti, M. Borgarello, C. Minero, E. Pramauro, E. Borgarello, N. Serpone, Chemosphere 17, 499 (1988) http://dx.doi.org/10.1016/0045-6535(88)90025-210.1016/0045-6535(88)90025-2Search in Google Scholar

[18] H.W. Gao, S.Q. Xia, H.Y. Wang, H.F. Zhao, Water Res. 38, 1642 (2004) http://dx.doi.org/10.1016/j.watres.2003.11.03010.1016/j.watres.2003.11.030Search in Google Scholar

[19] C. Kormann, D.W. Bahnemann, M.R. Hoffmann, Environ. Sci. Technol. 25, 494 (1991) http://dx.doi.org/10.1021/es00015a01810.1021/es00015a018Search in Google Scholar

[20] E. Vassileva, I. Proinova, K. Hadjiivanov, Analyst 121, 607 (1996) http://dx.doi.org/10.1039/an996210060710.1039/an9962100607Search in Google Scholar

[21] M.S. Kim, K.M. Hong, J.G. Chung, Water Res. 37, 3524 (2003) http://dx.doi.org/10.1016/S0043-1354(03)00227-610.1016/S0043-1354(03)00227-6Search in Google Scholar

[22] K.A. Hislop, J.R. Bolton, Environ. Sci. Technol. 33, 3119 (1999) http://dx.doi.org/10.1021/es981013410.1021/es9810134Search in Google Scholar

[23] S. Antonaraki, E. Androulaki, D. Dimotikali, A. Hiskia, E. Papaconstantinou, J. Photochem. Photobiol. A: Chem. 148, 191 (2002) http://dx.doi.org/10.1016/S1010-6030(02)00042-410.1016/S1010-6030(02)00042-4Search in Google Scholar

[24] H.W. Gao, C.L. Wang, J.Y. Jia, Y.L. Zhang, Anal. Sci. 23, 655 (2007) http://dx.doi.org/10.2116/analsci.23.65510.2116/analsci.23.655Search in Google Scholar PubMed

Published Online: 2009-6-21
Published in Print: 2009-9-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-009-0029-8/html
Scroll to top button