Solar-driven electrochemically assisted semiconductor-catalyzed iodide ion oxidation. Enhanced efficiency by oxide mixtures

Chockalingam Karunakaran 1  and Premkumar Anilkumar 1
  • 1 Department of Chemistry, Annamalai University, Annamalainagar, 608002, Tamilnadu, India

Abstract

Oxidation of iodide ion from an air-saturated solution under natural sunlight (900±50 W m−2) on the surfaces of TiO2, ZnO, Fe2O3, MoO3 and CeO2 enhances by 6 to 12-fold on application of a cathodic bias of −0.2 to −0.3 V (vs NHE) to the semiconductors; light, the semiconductor and dissolved oxygen are essential for iodine generation. The semiconductors under an anodic bias of +0.2 to +0.3 V (vs NHE) fail to oxidize iodide ion from air-saturated solution under sunlight. Under cathodic bias, semiconductor mixtures like TiO2-ZnO, TiO2-Fe2O3 and ZnO-Fe2O3 show enhanced photocatalytic activity, indicating improved charge separation in oxide mixtures. The mechanism of photocatalysis under cathodic bias is discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] T.L. Thompson, J.T. Yates, Jr., Chem. Rev. 106, 4428 (2006) http://dx.doi.org/10.1021/cr050172k

  • [2] P.A. Christensen, T.A. Egerton, S.A.M. Kosa, J.R. Tinlin, K. Scott, J. Appl. Electrochem. 35, 683 (2005) http://dx.doi.org/10.1007/s10800-005-1366-8

  • [3] T.A. McMurray, J.A. Byrne, P.S.M. Dunlop, E.T. McAdams, J. Appl. Electrochem. 35, 723 (2005) http://dx.doi.org/10.1007/s10800-005-1397-1

  • [4] J.J. Sene, W.A. Zeltner, M.A. Anderson, J. Phys. Chem. B 107, 1597 (2003) http://dx.doi.org/10.1021/jp026317y

  • [5] C. Karunakaran, P. Anilkumar, Solar Energy Mater. Solar Cells 92, 490 (2008) http://dx.doi.org/10.1016/j.solmat.2007.11.003

  • [6] C. Karunakaran, P. Anilkumar, J. Mol. Catal. A 265, 153 (2007) http://dx.doi.org/10.1016/j.molcata.2006.10.016

  • [7] C. Karunakaran, S. Senthilvelan, S. Karuthapandian, K. Balaraman, Catal. Commun. 5, 283 (2004) http://dx.doi.org/10.1016/j.catcom.2004.03.002

  • [8] K-i. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. A 134, 39 (2000)

  • [9] T. Ohno, K. Fujihara, S. Saito, M. Matsumura, Solar Energy Mater. Solar Cells 45, 169 (1997) http://dx.doi.org/10.1016/S0927-0248(96)00069-4

  • [10] J. Hodak, C. Quinteros, M.I. Litter, E.S. Roman, J. Chem. Soc. Faraday Trans. 92, 5081 (1996) http://dx.doi.org/10.1039/ft9969205081

  • [11] K. Tennakone, A.R. Kumarasinghe, G.R.R.A. Kumara, K.G.U. Wijayantha, P.M. Sirimanne, J. Photochem. Photobiol. A 108, 193 (1997) http://dx.doi.org/10.1016/S1010-6030(97)00090-7

  • [12] C. Karunakaran, R. Dhanalakshmi, Solar Energy Mater. Solar Cells 92, 1315 (2008) http://dx.doi.org/10.1016/j.solmat.2008.05.002

  • [13] C. Karunakaran, R. Dhanalakshmi, Solar Energy Mater. Solar Cells 92, 588 (2008) http://dx.doi.org/10.1016/j.solmat.2007.12.009

  • [14] K.C. Kim, C.S. Han, J. Phys. IV France 132, 185 (2006) http://dx.doi.org/10.1051/jp4:2006132035

  • [15] C.-M. Wang, A. Heller, H. Gerischer, J. Am. Chem. Soc. 114, 5230 (1992) http://dx.doi.org/10.1021/ja00039a039

OPEN ACCESS

Journal + Issues

Search