Hydrolysis kinetics of p-nitrophenylpicolinate catalyzed by schiff base Mn(III) complexes in Gemini 16-2-16 micellar solutiony

Bin Xu 1 , Weidong Jiang 1 , Jin Zhang 2 , Guangyin Fan 3 , and Jianzhang Li 1
  • 1 Key Laboratory of Green Chemistry & Technology, School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Sichuan Zigong, 643000, China
  • 2 Department of Chemistry and Environment Science, Chongqing University of Arts and Science, Chongqing Yongchuan, 402160, China
  • 3 College of Chemistry and Chemical Engineering, West China Normal University, Sichuan Nanchong, 637002, China

Abstract

Two mono-Schiff base Mn(III) complexes (MnL2Cl, L=L1 and L2) were synthesized and employed as artificial hydrolases in catalyzing the hydrolysis of p-nitrophenylpicolinate (PNPP) in Gemini 16-2-16 micellar solution. The effect of different micelles and their complex structures on the catalytic hydrolysis of PNPP is discussed in detail. The observations showed that MnL 22Cl exhibited higher catalytic activity over MnL 12Cl under a comparable condition, which confirmed that an open active centre is essential for modulating the activities of the two enzyme mimics. Moreover, under the conditions employed, hydrolytic rates of PNPP induced by these Mn(III) complexes were faster in Gemini 16-2-16 micelles than that in the micellar solution of cetyltrimethylammonium bromide (CTAB), a conventional analogue of Gemini 16-2-16.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] W. Zeng et al., Adv. Synth. Catal. 346, 1385 (2004) http://dx.doi.org/10.1002/adsc.200404094

  • [2] R. Krishnan, S. Vancheesan, J. Mol. Catal. A-Chem. 142, 377 (1999) http://dx.doi.org/10.1016/S1381-1169(98)00346-X

  • [3] T. Tsumaki, Bull. Chem. Soc. Jpn. 13, 252 (1938) http://dx.doi.org/10.1246/bcsj.13.252

  • [4] D. Chen, A.E. Martell, Inorg. Chem. 26, 1026 (1987) http://dx.doi.org/10.1021/ic00254a013

  • [5] W. Zhang, J.L. Loebach, S.R. Wilson, E.N. Jacobsen, J. Am. Chem. Soc. 112, 2801 (1990) http://dx.doi.org/10.1021/ja00163a052

  • [6] E.N. Jacobsen, L. Deng, Tetrahedron 50, 4323 (1994) http://dx.doi.org/10.1016/S0040-4020(01)89369-8

  • [7] T. Yamada, K. Inagawa, T. Nagata, T. Mukaiyama, Chem. Lett. 21, 2231 (1992) http://dx.doi.org/10.1246/cl.1992.2231

  • [8] W.D. Jiang et al., Colloid Surf. A 315, 103 (2008) http://dx.doi.org/10.1016/j.colsurfa.2007.07.018

  • [9] W.D. Jiang et al., J. Chem. Sci. 120, 411 (2008) http://dx.doi.org/10.1007/s12039-008-0065-5

  • [10] W.D. Jiang et al., Prog React. Kinet. Mec. 31, 11 (2006)

  • [11] W.D. Jiang et al., J. Disper. Sci. Tech. 27, 869 (2006) http://dx.doi.org/10.1080/01932690600719297

  • [12] W.D. Jiang et al., J. Disper. Sci. Tech. 27, 879 (2006) http://dx.doi.org/10.1080/01932690600719321

  • [13] J.Z. Li et al., Transit. Met. Chem. 31, 487 (2006) http://dx.doi.org/10.1007/s11243-006-0019-z

  • [14] X.M. Kou et al., J. Mol. Catal. A-Chem. 210, 23 (2004) http://dx.doi.org/10.1016/j.molcata.2003.09.004

  • [15] Z.S. Zhang, X.M. Yu, L.K. Fong, L.D. Margerum, Inorg. Chim. Acta 317, 72 (2001) http://dx.doi.org/10.1016/S0020-1693(01)00424-8

  • [16] M. Scarpellini et al., Inorg. Chem. 42, 8353 (2003) http://dx.doi.org/10.1021/ic026277c

  • [17] T. Itoh et al., Bull. Chem. Soc. Jpn. 69, 1265 (1996) http://dx.doi.org/10.1246/bcsj.69.1265

  • [18] A. Nomura, Y. Sugiura, Inorg. Chem. 43, 1708 (2004) http://dx.doi.org/10.1021/ic034931y

  • [19] J. Fendler, Membrane Mimetic Chemistry (Wiley, New York, 1982) 339

  • [20] C.A. Bunton, G. Savelli, Adv. Phys. Org. Chem. 22, 213 (1986) http://dx.doi.org/10.1016/S0065-3160(08)60169-0

  • [21] Ch. Rav-Acha, I. Ringel, S. Sarel, J. Katzhendler, Tetrahedron 44, 5879 (1988) http://dx.doi.org/10.1016/S0040-4020(01)81445-9

  • [22] F. Valérie, B. Alain, L. Pierre, J. Mol. Catal. 85, 45 (1993) http://dx.doi.org/10.1016/0304-5102(93)87122-O

  • [23] P. Scrimin, P. Tecilla, U. Tonellato, C.A. Bunton, Colloids Surf. A 144, 71 (1998) http://dx.doi.org/10.1016/S0927-7757(98)00652-9

  • [24] F. Mancin, P. Tecilla, U. Tonellato, Langmuir 16, 227 (2000) http://dx.doi.org/10.1021/la9909594

  • [25] P. Scrimin, P. Tecilla, U. Tonellato, J. Org. Chem. 56, 161 (1991) http://dx.doi.org/10.1021/jo00001a033

  • [26] F. Hampl, F. Liska, F. Mancin, P. Tecilla, U. Tonellato, Langmuir 15, 405 (1999) http://dx.doi.org/10.1021/la980861+

  • [27] R. Fornasier, P. Scrimin, P. Tecilla, U. Tonellato, J. Am. Chem. Soc. 111, 224 (1989) http://dx.doi.org/10.1021/ja00183a034

  • [28] B.Y. Jiang et al., Colloids Surf. A 235, 145 (2004) http://dx.doi.org/10.1016/j.colsurfa.2003.10.019

  • [29] S. Tascioglu, Tetrahedron 52, 11113 (1996) http://dx.doi.org/10.1016/0040-4020(96)00669-2

  • [30] S. Bhattacharya, V.P. Kumar, J. Org. Chem. 69, 559 (2004) http://dx.doi.org/10.1021/jo034745+

  • [31] S. Bhattacharya, V.P. Kumar, Langmuir 21, 71 (2005) http://dx.doi.org/10.1021/la048858f

  • [32] L.G. Qiu, A.J. Xie, Y.H. Shen, J. Mol. Catal. A-Chem. 244, 58 (2006) http://dx.doi.org/10.1016/j.molcata.2005.08.044

  • [33] L.G. Qiu, X. Jiang, L.N. Gu, G. Hu, J. Mol. Catal. A-Chem. 277, 15 (2007) http://dx.doi.org/10.1016/j.molcata.2007.07.028

  • [34] W.D. Jiang et al., J. Colloid Interf. Sci. 311, 530 (2007) http://dx.doi.org/10.1016/j.jcis.2007.02.056

  • [35] H. Chaimovich, I.M. Cuccovia, Quantitative analysis of reagent distribution and reaction rates in vesicles. Progress in Colloid and Polymer Science (Springer Press, Berlin, 1997) 67

  • [36] D.S. Sigman, C.T. Gutsche, J. Am. Chem. Soc. 94, 1724 (1972) http://dx.doi.org/10.1021/ja00760a051

  • [37] R. Zana, M. Benrraou, R. Rueff, Langmuir 7, 1072 (1991) http://dx.doi.org/10.1021/la00054a008

  • [38] F.M. Menger, J.S. Keiper, Angew. Chem. Int. Ed. 39, 1906 (2000) http://dx.doi.org/10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-Q

  • [39] J.G.J. Weijnen, A. Koudijs, G.A. Schellekens, J.F.J. Engbersen, J. Chem. Soc. Perkin Trans. II 829 (1992)

  • [40] T.H. Fife, T.J. Przystas, J. Am. Chem. Soc. 104, 2251 (1982) http://dx.doi.org/10.1021/ja00372a024

  • [41] T.H. Fife, T.J. Przystas, J. Am. Chem. Soc. 107, 1041 (1985) http://dx.doi.org/10.1021/ja00290a048

  • [42] H. Sigel, Angew. Chem. Int. Ed. 14, 394 (1975) http://dx.doi.org/10.1002/anie.197503941

  • [43] T.S. Choi, Y. Shimizu, H. Shirai, K. Hamada, Dyes Pigm. 45, 145 (2000) http://dx.doi.org/10.1016/S0143-7208(00)00015-2

  • [44] F. Alfani et al., Appl. Biochem. Biotechnol. 88, 1 (2000) http://dx.doi.org/10.1385/ABAB:88:1-3:001

  • [45] E. Abuin, E. Lissi, R. Duarte, Langmuir 19, 5374 (2003) http://dx.doi.org/10.1021/la030050s

  • [46] T. Lu, J. Huang, Z. Li, S. Jia, H. Fu, J. Phys. Chem. B. 112, 2909 (2008) http://dx.doi.org/10.1021/jp0766205

  • [47] T. Lu, J. Huang, D. Liang, Langmuir 24, 1740 (2008) http://dx.doi.org/10.1021/la702832v

  • [48] L. Zhou, X. Jiang, Y. Li, Z. Chen, X. Hu, Langmuir 23, 11404 (2007) http://dx.doi.org/10.1021/la701154w

  • [49] J. Chlebicki, J. Wegrzynska, K.A. Wilk, J. Colloid Interf. Sci. 323, 372 (2008) http://dx.doi.org/10.1016/j.jcis.2008.04.011

  • [50] J.E. Klijn et al., J. Phys. Chem. B. 110, 21694 (2006) http://dx.doi.org/10.1021/jp064774z

  • [51] X. Wang, J. Wang, Y. Wang, H. Yan, P. Li, R.K. Thomas, Langmuir 20, 53 (2004) http://dx.doi.org/10.1021/la0351008

  • [52] A. Rodríguez et al., J. Colloid Interf. Sci. 313, 542 (2007) http://dx.doi.org/10.1016/j.jcis.2007.04.049

  • [53] D. Landini, F. Rolla, J. Org. Chem. 47, 154 (1982) http://dx.doi.org/10.1021/jo00340a037

  • [54] C.J. O’Connor, R.E. Ramage, A.J. Porter, Adv. Colloid Interf. Sci. 15, 25 (1981) http://dx.doi.org/10.1016/0001-8686(81)80002-4

OPEN ACCESS

Journal + Issues

Search