Scolecite as an efficient heterogeneous catalyst for the synthesis of 2,4,5-triarylimidazoles

Lakshman Gadekar 1 , Shivshankar Mane 2 , Santosh Katkar 1 , Balasaheb Arbad 1 , and Machhindra Lande 1
  • 1 Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431 004, MS, India
  • 2 Catalysis Division, National Chemical Laboratory, Pune, 411 008, India

Abstract

Natural scolecite has been found as an effective catalyst for the one-pot synthesis of 2,4,5-triarylimidazole derivatives via a three component reaction using benzil or benzoin, aldehydes and ammonium acetate. This method provides several advantages such as being environmentally benign, reusable, possessing high yields with increased variations of the substituents in the product and preparative simplicity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J.C. Lee, et al., Nature 372, 739 (1994) http://dx.doi.org/10.1038/372739a0

  • [2] T. Maier, R. Schmierer, K. Bauer, H. Bieringer, B. Sachse, US Patent, 4820335 (1989)

  • [3] J.G. Lombardino, E.H. Wiseman, J. Med. Chem. 17, 1182 (1974); b) J.G. Lombardino, Ger. Offen. 2, 155, 558 (1972) http://dx.doi.org/10.1021/jm00257a011

  • [4] A.P. Phillips, H.L. White, S. Rosen, Eur. Pat. Appl. EP 58, 890 (1982)

  • [5] R. Schmierer, H. Mildenberger, H. Buerstell, German Patent 361464 (1987)

  • [6] J. Heeres, L.J.J. Backx, J.H. Mostmans, J. Vancustem, J. Med. Chem. 22, 1003 (1979) http://dx.doi.org/10.1021/jm00194a023

  • [7] I. Satoru, Imidazoles derivative for chemiluminescence microanalysis, Japan Kokkai Tokyo Koho JP, 01, 117, 867, May 10 (1989)

  • [8] L.L. Chang, K.L. Sidler, M.A. Cascieri, Biorg. Med. Chem. Lett. 11, 2549 (2001) http://dx.doi.org/10.1016/S0960-894X(01)00498-X

  • [9] T.H. Gallagher, S.M. Fier-Thompson, R.S. Garigipati, Biorg. Med. Chem. Lett. 5, 1171 (1995) http://dx.doi.org/10.1016/0960-894X(95)00189-Z

  • [10] B. Radziszewski, Chem. Ber. 15, 1493 (1882); b) F. Japp, H. Robinson, Chem. Ber. 15, 1268 (1882)

  • [11] M. Grimmett, A. Katritzky, C. Rees, E. Scriven, Pergamon: NewYork 3, 77 (1996)

  • [12] G. Sharma, Y. Jyothi, P. Lakshmi, Synth. Commun. 36, 2991 (2006) http://dx.doi.org/10.1080/00397910600773825

  • [13] S. Balalaie, A. Arabanian, M. Hashtroudi, Mont. Fur. Chemie 131, 945 (2000) http://dx.doi.org/10.1007/s007060070049

  • [14] J. Sangshetti, N. Kokare, A. Kotharkar, D. Shinde, Mont. Fur. Chemie 139, 125 (2008) http://dx.doi.org/10.1007/s00706-007-0766-3

  • [15] A. Mohammed, N. Lokare, J. Sangshetti, D. Shinde, J. Korean. Chem. Soc. 51, 418 (2007) http://dx.doi.org/10.5012/jkcs.2007.51.5.418

  • [16] M. Kidwai, P. Mothsra, V. Bansal, R. Goyal, Mont. Fur. Chemie 137, 1189 (2006) http://dx.doi.org/10.1007/s00706-006-0518-9

  • [17] J.N. Sangshetti, N.D. Kakare, S.A. Kotharkar, D.B. Shinde, J. Chem. Sci. 120(5), 463 (2008) http://dx.doi.org/10.1007/s12039-008-0072-6

  • [18] N.D. Kokare, J.N. Sangshetti, D.B. Shinde, Synthesis 2829 (2007)

  • [19] S. Siddiqui, U. Narkhede, S. Palimkar, T. Daniel, R. Lahoti, K. Srinivasan, Tetrahedron 61, 3539 (2005) http://dx.doi.org/10.1016/j.tet.2005.01.116

  • [20] J.F. Zhou, Y.Z. Song, Y.L. Zhu, S.J. Tu, Synth. Commun. 35, 1369 (2005) http://dx.doi.org/10.1081/SCC-200057281

  • [21] J.M. Thomas, Angew Chem. 33, 913 (1994) http://dx.doi.org/10.1002/anie.199409131

  • [22] M.M. Heravi, M. Tajbakhsh, A.N. Ahmadi, B. Mohajerani, Monatshefte fur Chemie 137, 175 (2006) http://dx.doi.org/10.1007/s00706-005-0407-7

  • [23] A. Hegedus, Z. Hell, A. Potor, Synth. Commun. 36, 3625 (2006) http://dx.doi.org/10.1080/00397910600943865

  • [24] S.V. Shinde, et al., Cat. Lett. 125, 57 (2008) http://dx.doi.org/10.1007/s10562-008-9508-3

  • [25] L.S. Gadekar, S.S. Katkar, K.N. Vidhate, B.R. Arbad, M.K. Lande, Bull. Cat. Soc. Ind. 7, 79 (2008)

  • [26] S. Katkar, L. Gadekar, M. Lande, Rasayan J. Chem. 1(4), 865 (2008)

OPEN ACCESS

Journal + Issues

Search