Effects of doping with CeO2 and calcination temperature on physicochemical properties of the NiO/Al2O3 system

Waleed Shaheen 1  and A. El-Hendawy 2
  • 1 Chemistry Department, Community Collage, Baha University, Baha, KSA, Egypt
  • 2 Physical Chemistry Department, Catalysis and Surface Laboratory, National Research Center, Dokki, Cairo, Egypt

Abstract

The effects of doping with CeO2 and calcination temperature on the physicochemical properties of the NiO/Al2O3 system have been investigated using DTA, XRD, nitrogen adsorption measurements at −196°C and decomposition of H2O2 at 30–50°C. The pure and variously doped solids were subjected to heat treatment at 300, 400, 700, 900 and 1000°C. The results revealed that the specific surface areas increased with increasing calcination temperature from 300 to 400°C and with doping of the system with CeO2. The pure and variously doped solids calcined at 300 and 400°C consisted of poorly crystalline NiO dispersed on γ-Al2O3. Heating at 700°C resulted in formation of well crystalline NiO and γ-Al2O3 phases beside CeO2 for the doped solids. Crystalline NiAl2O4 phase was formed starting from 900°C. The degree of crystallinity of NiAl2O4 increased with increasing the calcination temperature from 900 to 1000°C. An opposite effect was observed upon doping with CeO2. The NiO/Al2O3 system calcined at 300 and 400°C has catalytic activity higher than individual NiO obtained at the same calcination temperatures. The catalytic activity of NiO/Al2O3 system increased, progressively, with increasing the amount of CeO2 dopant and decreased with increasing the calcination temperature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] M.A.A. El-Masry, A. Gaber, E.M.H. Khater, J. Therm. Anal. 52, 489 (1998) http://dx.doi.org/10.1023/A:1010155203247

  • [2] T. Nissinen, M. Leskelä, M. Gasik, J. Lamminen, Thermochim. Acta 427, 155 (2004) http://dx.doi.org/10.1016/j.tca.2004.09.005

  • [3] J. Estelle, P. Salagre, Y. Cesteros, M. Serra, F. Medina, J.E. Sueiras, Solid State Ionics 156, 233 (2003) http://dx.doi.org/10.1016/S0167-2738(02)00612-4

  • [4] W. Brockner, C. Ehrhardt, M. Gjikaj, Thermochim. Acta 456, 64 (2007) http://dx.doi.org/10.1016/j.tca.2007.01.031

  • [5] G.A. Fagal, G.A. El-Shobaky, S.M. El-Khouly, Colloid Surf. A 178, 287 (2001) http://dx.doi.org/10.1016/S0927-7757(00)00710-X

  • [6] A.A. Zahran, W.M. Shaheen, G.A. El-Shobaky, Mat. Res. Bull. 40, 1065 (2005) http://dx.doi.org/10.1016/j.materresbull.2005.04.003

  • [7] V. Múčka, S. Tabačík, Rad. Phys. Chem. 38,3, 285 (1991)

  • [8] W.M. Shaheen, A.A. Zahran, G.A. El-Shobaky, Colloid Surf. A 231, 51 (2003) http://dx.doi.org/10.1016/j.colsurfa.2003.06.001

  • [9] H.G. El-Shobaky, S.A.H. Ali, N.A. Hassan, Mater. Sci. Eng. B 143, 21 (2007) http://dx.doi.org/10.1016/j.mseb.2007.07.072

  • [10] G.A. El-Shobaky, F.M. Radwan, A.M. Turky, A. Abdel-Momen, Adsorb. Sci. Technol. 19,10, 779 (2001) http://dx.doi.org/10.1260/0263617011494583

  • [11] H. Li, J.F. Ding, Appl. Cat. A 193, 9 (2000) http://dx.doi.org/10.1016/S0926-860X(99)00422-6

  • [12] S. Velu, C.S. Swamy, J. Catal. 153, 304 (1997)

  • [13] C. Cellier, B. Blangy, C. Mateos-Pedrero, P. Ruiz, Catal.Today, 112, 112 (2006) http://dx.doi.org/10.1016/j.cattod.2005.11.054

  • [14] G.A. El-Shobaky, M.M. Doheim, A.M. Ghozza, Rad. Phys. Chem. 69, 31 (2004) http://dx.doi.org/10.1016/S0969-806X(03)00444-4

  • [15] F. Patcas, D. Hönicke, Catal. Comm. 6, 23 (2005) http://dx.doi.org/10.1016/j.catcom.2004.10.005

  • [16] X. Zhang, J. Liu, Y. Jing, Y. Xie, Appl. Cat. A 240, 143 (2003) http://dx.doi.org/10.1016/S0926-860X(02)00426-X

  • [17] T.N. Angelidis, M. Papapetrou, Stud. Surf. Sci. Catal. 133, 131 (2001) http://dx.doi.org/10.1016/S0167-2991(01)81955-8

  • [18] X. Chen, K. Honda, Z. Zhang, Appl. Cat. A 288, 86 (2005) http://dx.doi.org/10.1016/j.apcata.2005.04.037

  • [19] S. Xu, X. Yan, X. Wang, Fuel 85, 2243 (2006) http://dx.doi.org/10.1016/j.fuel.2006.03.022

  • [20] P. Fornasiero et al., J. Catal. 151, 168 (1995) http://dx.doi.org/10.1006/jcat.1995.1019

  • [21] B.D. Cullity, Elements of X-Ray Diffraction, 3rd edition (Addison-Wesley, Reading, MA, 1967)

  • [22] W.M. Shaheen, M.M. Selim, Thermochim. Acta 322, 117 (1998) http://dx.doi.org/10.1016/S0040-6031(98)00486-9

  • [23] W.M. Shaheen, K.S. Hong, Thermochim. Acta 381, 153 (2002) http://dx.doi.org/10.1016/S0040-6031(01)00652-9

  • [24] W. Zheng, J. Zhang, Q. Ge, H. Xu, W. Li, Appl. Catal. B 80, 98 (2008) http://dx.doi.org/10.1016/j.apcatb.2007.11.008

  • [25] G.R. Rao, H.R. Sahu, B.G. Mishra, Colloid Surf. A 220, 261 (2003) http://dx.doi.org/10.1016/S0927-7757(03)00080-3

  • [26] Y.S. Han, J.B. Li, X.S. Ning, X.Z. Yang, B. Chi, Mater. Sci. Eng. A 369, 241 (2004) http://dx.doi.org/10.1016/j.msea.2003.11.026

OPEN ACCESS

Journal + Issues

Search