Catalytic reduction of NO by CO over Pd — doped Perovskite-type catalysts

Mariana Khristova 1 , Srdjan Petrović 2 , Ana Terlecki-Baričević 2 , and Dimitar Mehandjiev 1
  • 1 Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
  • 2 Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, 11000, Belgrade, Serbia

Abstract

The perovskite type oxides (nominal formula LaTi0.5Mg0.5O3) with addition of Pd were prepared by annealing the ethanol solution of precursors in nitrogen flow at 1200°C and characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption of NO (NO-TPD). Their activity was evaluated for NO reduction by CO under stoichiometric and oxidizing conditions and for direct decomposition of NO. Pd substituted samples exhibited high NO reduction activity and selectivity towards N2. Nearly complete elimination of NO was achieved at 200°C. Two simultaneous reactions, NO reduction by CO and direct decomposition of NO as well as two forms of NO adsorption were observed on the surface of Pd substituted perovskite samples. The distribution of Pd in different catalytically active sites or complexes on at the catalyst surface may be responsible for the proceeding of two reactions: NO reduction with CO and direct NO decomposition.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A.E. Giannakas, A.K. Ladavos, P.J. Pomonis, Appl. Catal. B: Environmental 49, 147 (2004) http://dx.doi.org/10.1016/j.apcatb.2003.12.002

  • [2] A.A. Leontiou, A.K. Ladavos, P.J. Pomonis, Appl. Catal. A: General 241, 133 (2003) http://dx.doi.org/10.1016/S0926-860X(02)00457-X

  • [3] V.C. Belessi, C.N. Costa, T.V. Bakas, T. Anasatasiadou, P.J. Pomonos, A.M. Efstathiou, Catal. Today 59, 347 (2000) http://dx.doi.org/10.1016/S0920-5861(00)00300-X

  • [4] M. Iwamoto, H. Yahiro, T. Kutsuno, S. Bunyu, S. Kagawa, Bull. Chem. Soc. Jpn. 62, 583 (1989) http://dx.doi.org/10.1246/bcsj.62.583

  • [5] R.D. Zhang, A. Villanueva, H. Allamadari, S. Kaliaguine, J. Catal. 237(2), 368 (2006) http://dx.doi.org/10.1016/j.jcat.2005.11.019

  • [6] R.D. Zhang, A. Villanueva, H. Allamadari, S. Kaliaguine, Appl. Catal. B: Environmental, 64(3–4), 220 (2006) http://dx.doi.org/10.1016/j.apcatb.2005.10.028

  • [7] R.D. Zhang, A. Villanueva, H. Allamadari, S. Kaliaguine, Appl. Catal. A: General 307(1), 85 (2006) http://dx.doi.org/10.1016/j.apcata.2006.03.019

  • [8] D. Peter, E. Garbovski, V. Perrichon, B. Pomier, M. Primet, Appl. Catal. A: General 205, 147 (2001) http://dx.doi.org/10.1016/S0926-860X(00)00551-2

  • [9] H. Tanaka, I. Tana, M. Uenishi, M. Kimura, K. Dohmae, In: N. Kruse, A. Frennet, J.-M. Bastin (Eds.), Topics in Catalysis (Kluwer Academic, New York, 2001) vol. 16/17, 63

  • [10] Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Nature 418, 164 (2002) http://dx.doi.org/10.1038/nature00893

  • [11] K. Zhou, H. Chen, Q. Tian, Zh. Hao, D. Shen, X. Xu, J. Molec. Catal. A: Chemical 189(2), 225 (2002) http://dx.doi.org/10.1016/S1381-1169(02)00177-2

  • [12] I. Twagirashema, M. Frere, L. Gengembre, C. Dujardin, P. Granger, Topics in Catalysis, 42–43, 171 (2007) http://dx.doi.org/10.1007/s11244-007-0173-3

  • [13] C. Dujardin, I. Twagirashema, P. Granger, J. Phys. Chem. C 112(44), 17183 (2008)

  • [14] P. Granger, C. Dujardin, J.-F. Paul, G. Leclercq, J. Mol. Catal. A: Chemical 228, 241 (2005) http://dx.doi.org/10.1016/j.molcata.2004.09.081

  • [15] L. Radev, M. Khristova, D. Mehandjiev, B. Samuneva, Catal. Lett. 112(3–4), 181 (2006) http://dx.doi.org/10.1007/s10562-006-0200-1

  • [16] M. Khristova, D. Mehandjiev, Carbon 36(9), 1379 (1998) http://dx.doi.org/10.1016/S0008-6223(98)00125-0

  • [17] S. Petrovic, L. Karanovic, P.K. Stefanov, M. Zdujic, A. Terlecki-Baricevic, Appl. Catal. B: Environmental 58, 133 (2005) http://dx.doi.org/10.1016/j.apcatb.2004.11.020

  • [18] D. Panayotov, M. Khristova, D. Mehandjiev, Appl. Catal. B: Environmental 34(1–2), 49 (1987)

  • [19] M. Kobayashi, Chem. Eng. Sci. 37, 393 (1982) http://dx.doi.org/10.1016/0009-2509(82)80091-2

  • [20] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, Mn, 1992)

  • [21] T.H. Fleish, R.F. Hicks, A.T. Bell, J. Catal. 87, 398 (1984) http://dx.doi.org/10.1016/0021-9517(84)90200-8

  • [22] B.A. Sexton, A.E. Hugnes, K. Foger, J. Catal. 77, 85 (1982) http://dx.doi.org/10.1016/0021-9517(82)90149-X

  • [23] A.M. Pisanu, C.E. Gigola, Appl. Catal. B: Environmental 20, 247 (1999) http://dx.doi.org/10.1016/S0926-3373(98)00110-6

OPEN ACCESS

Journal + Issues

Search