DFT investigation on mechanism of dirhodium tetracarboxylate-catalyzed O-H insertion of diazo compounds with H2O

Zhenfeng Liu 1  and Jianyong Liu 1
  • 1 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China, 116023

Abstract

The mechanism of the dirhodium tetracarboxylate-catalyzed O-H insertion reaction of diazomethane and methyl diazoacetate with H2O has been studied in detail using DFT calculations. The rhodium catalyst and a diazo compound couple to form a rhodiumcarbene complex. Of two reaction pathways of the Rh(II)-carbene complex with H2O, the stepwise pathway is more preferable than the concerted one. Formation of a Rh(II) complex-associated oxonium ylide is an exothermal process, and direct decomposition of the ylide gives a very high barrier. The high barriers for the 1,2-H shift of Rh(II) complex-associated oxonium ylides make the ylides become stable intermediates in both reactions, especially for the reactions in solution. Difficulty in formation of a free oxonium ylide supports experimental results, indicating that the Rh(II) complex-catalyzed nucleophilic addition of a diazo compound proceeds via a Rh(II) complex-associated oxonium ylide rather than via a free oxonium ylide.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Padwa, M.D. Weingarten, Chem. Rev. 96, 223 (1996) http://dx.doi.org/10.1021/cr950022h

  • [2] T. Ye, M.A. McKervey Chem. Rev. 94, 1091 (1994) http://dx.doi.org/10.1021/cr00028a010

  • [3] D.F. Taber, R.E. Ruckle, Jr. J. Am. Chem. Soc. 108, 7686 (1986) http://dx.doi.org/10.1021/ja00284a037

  • [4] M.P. Doyle et al., J. Am. Chem. Soc. 115, 958 (1993) http://dx.doi.org/10.1021/ja00056a021

  • [5] P. Wang, J. Adams, J. Am. Chem. Soc. 116, 3296 (1994) http://dx.doi.org/10.1021/ja00087a016

  • [6] M.C. Pirrung, A.T. Morehead, Jr. J. Am. Chem. Soc. 116, 8991 (1994) http://dx.doi.org/10.1021/ja00099a017

  • [7] J. Wang, B. Chen, J. Bao, J. Org. Chem. 63, 1853 (1998) http://dx.doi.org/10.1021/jo971747j

  • [8] Y. Landais, L. Parra-Rapado, D. Planchenault, V. Weber, Tetrahedron Lett. 38, 229 (1997) http://dx.doi.org/10.1016/S0040-4039(96)02285-X

  • [9] H.M.L. Davies, Q. Jin, P. Ren, A.Y. Kovalevsky, J. Org. Chem. 67, 4165 (2002) http://dx.doi.org/10.1021/jo016351t

  • [10] E. Nakamura, N. Yoshikai, M. Yamanaka, J. Am. Chem. Soc. 124, 7181 (2002) http://dx.doi.org/10.1021/ja017823o

  • [11] A. Padwa, J.P. Snyder, E.A. Curtis, S.M. Sheehan, K.J. Worsencroft, C.O. Kappe, J. Am. Chem. Soc. 122, 8155 (2000) http://dx.doi.org/10.1021/ja001088j

  • [12] S. M. Sheehan, A. Padwa, J. P. Snyder, Tetrahedron Lett. 39, 949 (1998) http://dx.doi.org/10.1016/S0040-4039(97)10667-0

  • [13] M.P. Doyle, M.A. McKervey, T. Ye, Modern Catalytic Methods for Organic Synthesis with Diazo Compounds (Wiley, New York, 1998)

  • [14] M.P. Doyle, M. Yan, Tetrahedron Lett. 43, 5929 (2002) http://dx.doi.org/10.1016/S0040-4039(02)01282-0

  • [15] A. Padwa, S.F. Hornbuckle, Chem. Rev. 91, 263 (1991) http://dx.doi.org/10.1021/cr00003a001

  • [16] Z. Qu, W. Shi, J. Wang, J. Org. Chem. 69, 217 (2004) http://dx.doi.org/10.1021/jo0350312

  • [17] D.J. Miller, C.J. Moody, Tetrahedron 51, 10811 (1995) http://dx.doi.org/10.1016/0040-4020(95)00648-R

  • [18] C. Lu, H. Liu, Z. Chen, W. Hu, A. Mi, Org. Lett. 7, 83 (2005) http://dx.doi.org/10.1021/ol0478483

  • [19] C. Lu, H. Liu, Z. Chen, W. Hu, A. Mi, Chem. Commun. 20, 2624 (2005) http://dx.doi.org/10.1039/b502093j

  • [20] S. Kitagaki et al., J. Am. Chem. Soc. 121, 1417 (1999) http://dx.doi.org/10.1021/ja983748e

  • [21] M.P. Doyle, D.C. Forbes, M.N. Protopova, S.A. Stanley, M.M. Vasbinder, K.R. Xavier, J. Org. Chem. 62, 7210 (1997) http://dx.doi.org/10.1021/jo970641l

  • [22] D.M. Hodgson, P.A. Stupple, C. Johnstone, Tetrahedron Lett. 38, 6471 (1997) http://dx.doi.org/10.1016/S0040-4039(97)01480-9

  • [23] M.P. Doyle, D.C. Forbes, M.M. Vasbinder, C.S. Peterson, J. Am. Chem. Soc. 120, 7653 (1998) http://dx.doi.org/10.1021/ja972095j

  • [24] G.G. Cox, C.J. Moody, D.J. Austin, A. Padwa, Tetrahedron 49, 5109 (1993) http://dx.doi.org/10.1016/S0040-4020(01)81876-7

  • [25] C. J. Moody, D.J. Miller, Tetrahedron 54, 2257 (1998) http://dx.doi.org/10.1016/S0040-4020(97)10435-5

  • [26] N. McCarthy, M.A. McKervey, T. Ye, M. McCann, E. Murphy, M.P. Doyle, Tetrahedron Lett. 33, 5983 (1992) http://dx.doi.org/10.1016/S0040-4039(00)61106-1

  • [27] N. Pierson, C. Fernandez-Garcia, M.A. McKervey, Tetrahedron Lett. 38, 705 (1997) http://dx.doi.org/10.1016/S0040-4039(97)01003-4

  • [28] J.S. Clark, M. Fretwell, G.A. Whitlock, C.J. Burns, D.N.A. Fox, Tetrahedron Lett. 39, 97 (1998) http://dx.doi.org/10.1016/S0040-4039(97)10441-5

  • [29] R.P. Wurz, A.B. Charette, Org. Lett. 4, 4531 (2002) http://dx.doi.org/10.1021/ol0270879

  • [30] Z.F. Liu, Y. Wang, X.F. Yue, K.L. Han, Chem. Res. Chinese U. 23, 221 (2007) http://dx.doi.org/10.1016/S1005-9040(07)60047-6

  • [31] Z.F. Liu, X.F. Yue, Q. Wei, K.L. Han, Chin. Chem. Lett. 18, 107 (2007) http://dx.doi.org/10.1016/j.cclet.2006.11.012

  • [32] M.J. Frisch et al., J. A. Gaussian 98, revision A.9 (Gaussian, Inc., Pittsburgh, PA, 1998)

  • [33] A.D. Becke, J. Chem. Phys. 98, 5648 (1993) http://dx.doi.org/10.1063/1.464913

  • [34] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988) http://dx.doi.org/10.1103/PhysRevB.37.785

  • [35] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985) http://dx.doi.org/10.1063/1.448799

  • [36] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 284 (1985) http://dx.doi.org/10.1063/1.448800

  • [37] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985) http://dx.doi.org/10.1063/1.448975

  • [38] K. Fukui, Acc. Chem. Res. 14, 363 (1981) http://dx.doi.org/10.1021/ar00072a001

  • [39] C. Gonzalez, H.B. Schlegel, J. Chem. Phys. 90, 2154 (1989) http://dx.doi.org/10.1063/1.456010

  • [40] C. Gonzalez, H.B. Schlegel, J. Phys. Chem. 94, 5523 (1990) http://dx.doi.org/10.1021/j100377a021

  • [41] S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 55, 117 (1981) http://dx.doi.org/10.1016/0301-0104(81)85090-2

  • [42] S. Miertus, J. Tomasi, J. Chem. Phys. 65, 239 (1982) http://dx.doi.org/10.1016/0301-0104(82)85072-6

  • [43] V. Barone, M. Cossi, J. Tomasi, J. Comput. Chem. 19, 404 (1998) http://dx.doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W

  • [44] H. Zhang, R.S. Zhu, G.J. Wang, K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 110, 2922 (1999) http://dx.doi.org/10.1063/1.477935

  • [45] K.L. Xie, Y. Zhang, M.Y. Zhao, K.L. Han, Phys. Chem. Chem. Phys. 5, 2034 (2003) http://dx.doi.org/10.1039/b300763d

  • [46] T.S. Chu, Y. Zhang, K.L. Han, Int. Rev. Phys. Chem. 25, 201 (2006) http://dx.doi.org/10.1080/01442350600677929

  • [47] T.S. Chu, K.L. Han, G.C. Schatz, J. Phys. Chem. A 111, 8286 (2007) http://dx.doi.org/10.1021/jp075173q

  • [48] T.S. Chu, K.L. Han, Phys. Chem. Chem. Phys. 10, 2431 (2008) http://dx.doi.org/10.1039/b715180b

  • [49] K.L. Han, G.Z. He, J. Photochem. Photobiol. C: Photochem. Rev. 8, 55 (2007) http://dx.doi.org/10.1016/j.jphotochemrev.2007.03.002

  • [50] K.L. Han, G.Z. He, N.Q. Lou, J. Chem. Phys. 105, 8699 (1996) http://dx.doi.org/10.1063/1.472651

  • [51] J. Hu, K.L. Han, G.Z. He, Phys. Rev. Lett. 95, 123001 (2005) http://dx.doi.org/10.1103/PhysRevLett.95.123001

  • [52] C. Gonzalez, A. Restrepo-Cossio, M. Marques, K.B. Wiberg, J. Am. Chem. Soc. 118, 5408 (1996) http://dx.doi.org/10.1021/ja952771m

OPEN ACCESS

Journal + Issues

Search