Multifunctional PEG-grafted chitosan copolymer possessing amino and carboxyl (or formyl) groups

Chengbin Liu, Yulin Wu, Xiaojian Wang, Zhang Hu, and Shenglian Luo
  • 1 State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, People’s Republic of China
  • 2 College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People’s Republic of China

Abstract

New multifunctional PEG-grafted chitosan copolymers possessing both amino and carboxyl (4) or formyl (5) groups were synthesized by the grafting reaction method between chitosan and heterobifunctional PEG from anionic polymerization of ethylene oxide. Completion of the reactions and characterization of the resulting polymers were demonstrated by 1H NMR, FT-IR and GPC studies. The multifunctional polymers may have potential utility in gene/drug co-delivery or heterogeneous catalysis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J.W. Bae, E. Lee, K.M. Park, K.D. Park, Macromolecules 42(10), 3437 (2009) http://dx.doi.org/10.1021/ma900185x

  • [2] H. Workman, P.F. Flynn, J. Am. Chem. Soc. 131(11), 3806 (2009) http://dx.doi.org/10.1021/ja8084753

  • [3] X. Yi, E. Batrakova, W.A. Banks, S. Vinogradov, A.V. Kabanov, Bioconjug. Chem. 19, 1071 (2008) http://dx.doi.org/10.1021/bc700443k

  • [4] Y. Bae, N. Nishiyama, K. Kataoka, Bioconjug. Chem. 18(4), 1131 (2007) http://dx.doi.org/10.1021/bc060401p

  • [5] J. Zhang, M.R. Dubay, C.J. Houtman, S.J. Severtson, Macromolecules 42(14), 5080 (2009) http://dx.doi.org/10.1021/ma900795f

  • [6] L. Chang, M.V. Kulkarni, C.M. Sun, Cent. Eur. J. Chem. 3(2), 288 (2005) http://dx.doi.org/10.2478/BF02475997

  • [7] S. Fukushima, K. Miyata, N. Nishiyama, N. Kanayama, Y. Yamasaki, K. Kataoka, J. Am. Chem. Soc. 127, 2810 (2005) http://dx.doi.org/10.1021/ja0440506

  • [8] M.T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, D. Labarre, Life Sci. 61, 749 (1997) http://dx.doi.org/10.1016/S0024-3205(97)00539-0

  • [9] J.K. Suh, H.W. Matthew, Biomaterials 21, 2589 (2000) http://dx.doi.org/10.1016/S0142-9612(00)00126-5

  • [10] R. Zhang, M. Tang, A. Bowyer, R. Eisenthale, J. Hubble, Biomaterials 26, 4677 (2005) http://dx.doi.org/10.1016/j.biomaterials.2004.11.048

  • [11] M. Prabaharan, R.L. Reis, J.F. Mano, React. Funct. Polym. 67, 43 (2007) http://dx.doi.org/10.1016/j.reactfunctpolym.2006.09.001

  • [12] Y. Yu, X. Chang, H. Ning, S. Zhang, Cent. Eur. J. Chem. 6(1), 107 (2008) http://dx.doi.org/10.2478/s11532-007-0065-1

  • [13] M. Prabaharan, J.F. Mano, Carbohydr. Polym. 63, 153 (2006) http://dx.doi.org/10.1016/j.carbpol.2005.08.051

  • [14] Y. Nagasaki, M. Iijima, M. Kato, K. Kataoka, Bioconjug. Chem. 6, 702 (1995) http://dx.doi.org/10.1021/bc00036a007

  • [15] Y.D. Wu, C.B. Liu, X.Y. Zhao, J.N. Xiang, J. Polym. Res. 15, 181 (2008) http://dx.doi.org/10.1007/s10965-007-9157-z

  • [16] R.A.A. Muzzarelli, Carbohydr. Res. 107, 199 (1982) http://dx.doi.org/10.1016/S0008-6215(00)80539-X

  • [17] M. Thomas, A.M. Klibanov, Proc, Natl. Acad. Sci. USA 99, 14640 (2002) http://dx.doi.org/10.1073/pnas.192581499

  • [18] M. Thomas, J.J. Lu, Q. Ge, C. Zhang, J. Chen, A.M. Klibanov, Proc, Natl. Acad. Sci. USA 102, 5679 (2005) http://dx.doi.org/10.1073/pnas.0502067102

  • [19] S.H. Pun et al., Bioconjug Chem. 15(4), 831 (2004) http://dx.doi.org/10.1021/bc049891g

  • [20] N. Nishiyama1, K. Kataoka, Adv. Polym. Sci. 193, 67 (2006) http://dx.doi.org/10.1007/12_025

  • [21] Y. Wang, S. Gao, W.H. Ye, H.S. Yoon, Y.Y. Yang, Nat. Mater. 5, 791 (2006) http://dx.doi.org/10.1038/nmat1737

OPEN ACCESS

Journal + Issues

Search