A computational NPA and NMR study of Li-capped armchair GaN nanotubes

Ahmad Seif 1  and Temer Ahmadi 2
  • 1 Nanoscience Computation Lab, Islamic Azad University, Boroujerd Branch, Boroujerd, 65761, Iran
  • 2 Department of Chemistry, Villanova University, Villanova, PA, 19085, USA

Abstract

The geometrical structure, the nuclear magnetic resonance (NMR) parameters and natural population analysis (NPA) of the H-capped (raw) and Li-capped armchair single-walled gallium nitride nanotubes (GaNNTs) are computed and reported for the first time. Our results show that the variation of isotropic chemical shielding (ICS) parameters at the sites of 15N and 71Ga along the length of both models-raw and Li-capped- are reversed. The calculations were carried out with B3LYP-DFT method and 6–31G (d) standard basis sets using the Gaussian 03 suite of programs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992) http://dx.doi.org/10.1103/PhysRevLett.68.631

  • [2] N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992) http://dx.doi.org/10.1103/PhysRevLett.68.1579

  • [3] S.M. Lee, Y.H. Lee, Y.G. Hwang, J. Elsner, D. Porezag, Th. Frauenheim, Phys. Rev. B 60, 7788 (1999) http://dx.doi.org/10.1103/PhysRevB.60.7788

  • [4] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature (London) 422, 599 (2003) http://dx.doi.org/10.1038/nature01551

  • [5] P. Chen, X. Wu, J. Lin, K.L. Tan, Science 285, 91 (1999) http://dx.doi.org/10.1126/science.285.5424.91

  • [6] R.T. Yang, Carbon 38, 623 (2000) http://dx.doi.org/10.1016/S0008-6223(99)00273-0

  • [7] J.M. Tarascon, M. Armand, Nature 414, 359 (2001) http://dx.doi.org/10.1038/35104644

  • [8] K.B. Lipkowitz, D.B. Boyd (Eds.), Reviews in Computational Chemistry (VCH Publishers, Inc., New York, 1996) vol. 8, 245

  • [9] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990) http://dx.doi.org/10.1021/ja00179a005

  • [10] M.J. Allen, T.W. Keal, D.J. Tozer, Chem. Phys. Lett. 380, 70 (2003) http://dx.doi.org/10.1016/j.cplett.2003.08.101

  • [11] M.J. Duer, Solid State NMR Spectroscopy (Blackwell Science Ltd., London, 2002)

  • [12] H.S. Kang, J. Phys. Chem. B 110, 4621 (2006) http://dx.doi.org/10.1021/jp056941l

  • [13] P. Schleyer, C. Marker, J. Am. Chem. Soc. 118, 6317 (1996) http://dx.doi.org/10.1021/ja960582d

  • [14] M. Zhang, Z.M. Su, L.K. Yan, Y.Q. Qiu, G.H. Chen, R.S. Wang, Chem. Phys. Lett. 408, 145 (2005) http://dx.doi.org/10.1016/j.cplett.2005.04.025

  • [15] A. Seif, A. Boshra, J. Comput. Theor. Nanosci. 6, 732 (2009) http://dx.doi.org/10.1166/jctn.2009.1101

  • [16] M.J. Frisch et al., Gaussian 03, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2004)

  • [17] K. Wolinski, J.F. Hinton, P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990) http://dx.doi.org/10.1021/ja00179a005

  • [18] F.J. London, J. Phys. Radium 8, 397 (1937) http://dx.doi.org/10.1051/jphysrad:01937008010039700

  • [19] R. Ditchfield, Mol. Phys. 27, 789 (1974) http://dx.doi.org/10.1080/00268977400100711

  • [20] F. Ribas Prado et al., Magn. Reson. 37, 431 (1980)

  • [21] H. Fukui, K. Miura, H. Yamazaki, T. Nosaka, J. Chem. Phys. 82, 1410 (1985) http://dx.doi.org/10.1063/1.448463

  • [22] U. Haeberlen, in: J.S. Waugh (Ed.) Advances in Magnetic Resonance (Academic Press, New York, 1976) (Suppl. 1)

OPEN ACCESS

Journal + Issues

Search