Influence of heat treatment on the phase transition of ZrMo2O8 and photocatalytic activity

Maria Mancheva 1 , Reni Iordanova 1 , Yanko Dimitriev 2 , Georgi Tyuliev 3 , and Tzvetoslav Iliev 4
  • 1 Bulgarian Academy of Science
  • 2 University of Chemical Technology and Metallurgy
  • 3 Bulgarian Academy of Science
  • 4 Bulgarian Academy of Science

Abstract

ZrMo2O7(OH)2·2H2O was obtained from ZrOCl2·2H2O and Na2MoO4·2H2O by a coprecipitation method. The phase and structural changes occurred during the heat-treatment of ZrMo2O7(OH)2·2H2O were investigated by XRD, IR and XPS analysis. The sequence of phase transformation can be divided into three stages: (1) transformation of ZrMo2O7(OH)2·2H2O to orthorhombic LT-ZrMo2O8 up to 300°C; (2) obtaining of mixture of both polymorphs of ZrMo2O8: cubic and trigonal at 400°C; (3) conversion to single trigonal (α) ZrMo2O8 above 450°C. The microstructure of the obtained trigonal (α) ZrMo2O8 was observed by scanning electron microscopy (SEM). The particle sizes were below 0.5 µm. The specific surface area was measured by modified BET method. The photocatalytic activity of the obtained trigonal (α) ZrMo2O8 powders was investigated by degradation of a model aqueous solution of Malachite Green (MG) upon UV-light irradiation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] P. Tarte, M. Auray, Solid State Chemistry, 3, 631 (1982)

  • [2] R.F. Klevtsova, L.A. Glinskaya, E.S. Zolotova, P.V. Klestsov, Dokl. Akad. Nauk. (SSSR) 3, 91 (1989) (In Russian)

  • [3] A.M.K. Andersen, S. Carlson, Acta Cryst. B57, 20 (2001)

  • [4] S. Carlson, A.M.K. Andersen, Phys. Rev. B61, 11209 (2000)

  • [5] S. Allen, R.J. Ward, M.R. Hampson, R.K.B. Gover, J.S.O. Evans, Acta Cryst. B60, 32 (2004)

  • [6] C. Lind, D.G VanDerveer, A.P. Wilkinson, J. Chen, M.T. Vaughan, D.J. Weider, Chem. Mater. 13, 487 (2001) http://dx.doi.org/10.1021/cm000788k

  • [7] C. Lind, A.P. Wilkinson, Z. Hu, S. Short, J.D. Jorgensen, Chem. Mater. 10, 2335 (1998) http://dx.doi.org/10.1021/cm980438m

  • [8] C. Lind, A.P. Wilkinson, C.J. Rawn, E.A. Payzant, J. Mater. Chem. 11, 3354 (2001) http://dx.doi.org/10.1039/b104283c

  • [9] C. Lind, A.P. Wilkinson, J. Sol-Gel Sci. Technol. 25, 51 (2002) http://dx.doi.org/10.1023/A:1016041010949

  • [10] S. Allen, J.S.O. Evans, Phys. Rev. B 86, 134101 (2003) http://dx.doi.org/10.1103/PhysRevB.68.134101

  • [11] S. Allen, N.R. Warmingham, R.K.B. Gover, J.S.O. Evans, Chem. Mater. 15, 3406 (2003) http://dx.doi.org/10.1021/cm034397s

  • [12] G. Blasse, G.J. Dorksen, J. Phys. Chem. Solids. 48, 591 (1987) http://dx.doi.org/10.1016/0022-3697(87)90058-8

  • [13] H. Liu, P. Cheung, E. Iglesia, J. Phys. Chem. B107, 4118 (2003)

  • [14] K. Chen, E. Iglesia, A.T. Bell, J. Phys. Chem. B105, 646 (2001)

  • [15] P. P. Sahoo, S. Sumithra, G. Madras, T.N.G. Row, J. Phys. Chem. C113, 10661 (2009)

  • [16] P. P. Sahoo, S. Sumithra, G. Madras, T.N.G. Row, Bull. Mater. Sci. 33, 337 (2009) http://dx.doi.org/10.1007/s12034-009-0048-2

  • [17] A. Bojinova, R. Kralchevska, I. Poulios, C. Dushkin, Mater. Chem. Phys. 106, 187 (2007) http://dx.doi.org/10.1016/j.matchemphys.2007.05.035

  • [18] N. Kaneva, G. Yordanov, C. Dushkin, Bull. Mater. Sci. 33, 11 (2010) http://dx.doi.org/10.1007/s12034-010-0015-y

  • [19] G. Hunag, C. Zhang, Y. Zhu, J. Alloys and Comp. 432, 269 (2007) http://dx.doi.org/10.1016/j.jallcom.2006.05.109

  • [20] H.H. Li, K.W. Li, K. Wang, Mater. Chem. Phys. 116, 134 (2009). http://dx.doi.org/10.1016/j.matchemphys.2009.02.058

  • [21] R. Iordanova, M. Mancheva, Y. Dimitriev, D. Klissurski, G. Tyuliev, B. Kunev, J. Alloys and Comp. 485, 104 (2009) http://dx.doi.org/10.1016/j.jallcom.2009.06.064

  • [22] R. Clearfield, H. Blessing, J. Inorg. Nucl. Chem. 34, 2643 (1972) http://dx.doi.org/10.1016/0022-1902(72)80213-6

  • [23] D.V.S. Muthu, B. Chen, J.M. Wrobel, A.M.K. Andersen, S. Carlson, M.B. Kruger, Phys. Rev. B65, 64101 (2002)

  • [24] K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination, 5th edition (Wiley, New Work, 1997)

  • [25] J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian, A.W. Sleight, Chem. Mater. 8, 2809 (1996) http://dx.doi.org/10.1021/cm9602959

  • [26] B. Chen, D.V.S. Muthu, Z.X. Liu, A.W. Sleight, M.B. Kruger, Phys. Rev. 64, 21411 (2001)

  • [27] K. Kanamori, T. Kineri, R. Fukuda, T. Kawano, K. Nishio, J. Mater. Sci. 44, 855 (2009) http://dx.doi.org/10.1007/s10853-008-3128-6

  • [28] K.V.R. Chary, K.R. Reddy, G. Kishan, J.W. Niemantsverdriet, G. Mestl, J. Catal. 226, 283 (2004) http://dx.doi.org/10.1016/j.jcat.2004.04.028

  • [29] S. Chang, R. Doong, Chem. Mater. 17, 4837 (2007) http://dx.doi.org/10.1021/cm051264t

  • [30] B.M. Reddy, B. Chowdhury, E.P. Reddy, A. Fernandez, J. Molec. Catal. A: Chem. 162, 431 (2000) http://dx.doi.org/10.1016/S1381-1169(00)00336-8

  • [31] A. Guerfi, R.W. Paynter, L.H. Dao, J. Electrochem. Soc. 142, 3457 (1995) http://dx.doi.org/10.1149/1.2050004

  • [32] F. Barath, M. Turki, V. Keller, G. Maire, J. Catal. 185, 1 (1999) http://dx.doi.org/10.1006/jcat.1999.2478

  • [33] F.P. Rouxinol, B.C. Trasferetti, R. Landers, M. A. Bica de Moraes, J. Braz. Chem. Soc. 15, 324 (2004) http://dx.doi.org/10.1590/S0103-50532004000200026

  • [34] J. Torres, J.E. Alfonco, L.D. Lopez-Carreno, Phys. Stat. Sol (C). 10, 3726 (2005) http://dx.doi.org/10.1002/pssc.200461782

  • [35] J. Yu, L. Qi, B. Cheng, X. Zhao, J. Hazard. Mat. 160, 621 (2008) http://dx.doi.org/10.1016/j.jhazmat.2008.03.047

OPEN ACCESS

Journal + Issues

Search