Intramolecular N to N acyl migration in conformationally mobile 1′-acyl-1-benzyl-3′,4′-dihydro-1′H-spiro[piperidine-4,2′-quinoline] systems promoted by debenzylation conditions (HCOONH4/Pd/C)

Leonor Méndez 1  and Vladimir Kouznetsov 2
  • 1 Environmental Research Group, Environmental Chemistry Faculty, Santo Tomas University, A.A. 1076, Bucaramamga, Colombia
  • 2 Laboratory of Organic & Biomolecular Chemistry, School of Chemistry, Industrial University of Santander, A.A. 678, Bucaramamga, Colombia

Abstract

We report an efficient and useful synthesis of new attractive spiropiperdine scaffolds 4 based on an intramolecular acyl transfer process in 1′-acyl-1-benzyl-3′,4′-dihydro-1′H-spiro[piperidine-4,2′-quinolines] 3 using simple and mild debenzylation reaction conditions (HCOONH4/Pd/C). The compounds 3 were prepared by acylating 1-benzyl-4′-methyl-3′,4′-dihydro-1′H-spiro[piperidine-4,2′-quinolines] 2 that are easily available from 1-benzyl-4-piperidone 1. The intramolecular character of this process was proven primarily through a crossover experiment technique. Through an examination of all spectroscopic information (1H, 13C NMR, VT-1H NMR, and 2D NMR) it was possible to correctly predict amide configurations and piperidine ring conformations of starting and final spiropiperidine compounds.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] A. Williams, K. T. Douglas, Chem. Rev. 75, 627(1975) http://dx.doi.org/10.1021/cr60297a006

  • [2] M.B. Smith, J. March, March’s Advanced Organic Chemistry, 5th edition (John Wiley & Sons, New York, 2001)

  • [3] A. Williams, Concerted Organic and Bio-organic Mechanisms (CRC Press, Boca Raton, 2000)

  • [4] P.E. Hanna, Adv. Pharmacol. 27, 401 (1994) http://dx.doi.org/10.1016/S1054-3589(08)61041-8

  • [5] M.W. Vetting, S.L.P. De Carvalho, M. Yu, S.S. Hegde, S. Magnet, S.L. Roderick, J.S. Blanchard, Arch. Biochem. Biophys. 433, 212 (2005) http://dx.doi.org/10.1016/j.abb.2004.09.003

  • [6] I. Kumar, R.F. Pratt, Biochemistry 9961 (2005)

  • [7] P.E. Hanna, Curr. Med. Chem. 3, 195 (1996)

  • [8] D. Kim, F.P. Guengerich, Annu. Rev. Pharmacol. Toxicol. 45, 27 (2005) http://dx.doi.org/10.1146/annurev.pharmtox.45.120403.100010

  • [9] L. Liu, A. Von Vett, N.K. Zhang, K.J. Walters, C.R. Wagner, P.E. Hanna, Chem. Res. Toxicol. 20, 1300 (2007) http://dx.doi.org/10.1021/tx7001614

  • [10] N.J. Butcher, J. Tiang, R.E. Minchin, Curr. Drug Metabolism 9, 498 (2008) http://dx.doi.org/10.2174/138920008784892128

  • [11] S. Ba-Saif, A.K. Luthra, A. Williams, J. Am. Chem. Soc. 109, 6362 (1987) http://dx.doi.org/10.1021/ja00255a021

  • [12] S. Ba-Saif, A.K. Luthra, A. Williams, J. Am. Chem. Soc. 111, 2647 (1989) http://dx.doi.org/10.1021/ja00189a045

  • [13] A.C. Hengge, R.A. Hess, J. Am. Chem. Soc. 116, 11256 (1994) http://dx.doi.org/10.1021/ja00104a007

  • [14] E. Chrystiuk, A. Williams, J. Am. Chem. Soc. 109, 3040 (1987) http://dx.doi.org/10.1021/ja00244a028

  • [15] M. Skwarczynsk, Y. Kiso, Curr. Med. Chem. 26, 2813 (2007) http://dx.doi.org/10.2174/092986707782360123

  • [16] A. Volonterio, C. Ramirez de Arellano, M. Zanda, J. Org. Chem. 70, 2161 (2005) http://dx.doi.org/10.1021/jo0480848

  • [17] A. Volonterio, M. Zanda, J. Org. Chem. 73, 7486 (2008) http://dx.doi.org/10.1021/jo801288s

  • [18] P.M. Weintraub, J.S. Sabol, J.M. Kane, D.R. Borcherding, Tetrahedron 59, 2953 (2003) http://dx.doi.org/10.1016/S0040-4020(03)00295-3

  • [19] P.S. Watson, B. Jiang, B. Scott, Org. Lett. 2, 3679 (2000) http://dx.doi.org/10.1021/ol006589o

  • [20] G. Brieger, T.J. Nestrick, Chem. Rev. 74, 567 (1974) http://dx.doi.org/10.1021/cr60291a003

  • [21] S. Bartane, I. Schoen, P.M. Pellioniszne, B. Kiss, E. Karpati, A. Kis-Varga, E. Lapis, A. Gere, I. Laszlovszky, S. Farkas, K. Csomov, C. Horvath, S. Szabo, P. Horvath, J. Laszy, C. Szantay, Hung. Teljes HU 76, 345, 1997; Chem. Abstr. 128, 154093f (1998) (In Hungarian)

  • [22] L.Y. Vargas Méndez, V.V. Kouznetsov, Tetrahedron Lett. 48, 2509 (2007) http://dx.doi.org/10.1016/j.tetlet.2007.02.037

  • [23] V.V. Kouznetsov, P.B. Díaz, M.C.M. Sanabria, L.Y. Vargas Méndez, J.C. Poveda, E.E. Stashenko, A. Bahsas, J. Amaro-Luis, Lett. Org. Chem. 2, 29 (2005) http://dx.doi.org/10.2174/1570178053400234

  • [24] L.A. La Planche, M.T. Rogers, J. Am. Chem. Soc. 85, 3728 (1963) http://dx.doi.org/10.1021/ja00906a002

  • [25] W.E. Stewart, T.H. Siddall, Chem. Rev. 70, 517 (1970) http://dx.doi.org/10.1021/cr60267a001

  • [26] R.A. Johnson, J. Org. Chem. 33, 3627 (1968) http://dx.doi.org/10.1021/jo01273a060

  • [27] M.J. Frisch et al., Gaussian 03, Revision D.1 (Gaussian Inc., Pittsburgh, 1995)

  • [28] L.M. Jackman, Dynamic nuclear magnetic resonance spectroscopy (Academic Press, New York, 1975) cap. 7

  • [29] M. Oki, Aplications of dynamic NMR spectroscopy to organic chemistry (VCH Publishers, Inc, Deerfield Beach, Florida, 1985)

  • [30] H. Paulsen, K. Todt, Angew. Chem. Int. Ed. Engl. 5, 899 (1966) http://dx.doi.org/10.1002/anie.196608992

  • [31] J.B. Lambert, R.G. Keske, R.E. Carhart, A.P. Jovanovich, J. Am. Chem. Soc. 89, 3761 (1967) http://dx.doi.org/10.1021/ja00991a014

  • [32] D.M. Lynch, W.J. Cole, J. Org. Chem. 31, 3337 (1966) http://dx.doi.org/10.1021/jo01348a052

  • [33] F. A. Carroll, Perspectives on structure and mechanism in organic chemistry (Brooks/Cole Publishing Company, Pacific Grove, California, 1998)

  • [34] M.B. Smith, J. March, March’s advanced organic chemistry: reactions, mechanisms, and structure (John Wiley & Sons, Inc., New York, 2001)

OPEN ACCESS

Journal + Issues

Search