Non-magnetic impurity doping effect on the magnetic state of p-type Al-doped delafossite oxide CuCrO2

Fatma Jlaiel 1 , Mongi Amami, Piere Strobel 2 , and Abdelhamid Salah 1
  • 1 Laboratory of Materials Science and Environment, University of Sfax, 3038, Sfax, Tunisia
  • 2 Joseph Fourier Néel Institute — CNRS, 38042, Grenoble Cedex 9, France

Abstract

We investigated the substitution effects of Al3+ for Cr3+ on the structure and magnetic, properties of delafossite oxide CuCrO2, which possesses a quasi-2D Heisenberg triangular antiferromagnetic (AFM) lattice. The lattice parameters was found to vary according to the Vegard’s rule. We also found that the large local lattice distortion, caused by the nonmagnetic dopant with different radii between magnetic and nonmagnetic ions, affects the samples significantly. Magnetization and specific heat measurements indicated that AFM ordering is diluted by the substitution of nonmagnetic Al3+ for Cr3+ (S = 3/2).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] R.D. Shannon, D.B. Rogers, C.T. Prewitt, Inorg. Chem. 10, 713 (1971) http://dx.doi.org/10.1021/ic50098a011

  • [2] J.P. Doumerc, A. Ammar, A. Wichainchai, M. Pouchard, P. Hagenmuller, J. Phys. Chem. Solids 48, 37 (1987) http://dx.doi.org/10.1016/0022-3697(87)90140-5

  • [3] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997) http://dx.doi.org/10.1038/40087

  • [4] J.R. Monnier, G.R. Apai, M.J. Hanrahan, U.S. Patent 4748144-A (1988)

  • [5] K. El Ataoui, J.P. Doumerc, A. Ammar, J.C. Grenier, L. Fournes, A. Wattiaux, M. Pouchard, Solid State Sci. 7, 710 (2005) http://dx.doi.org/10.1016/j.solidstatesciences.2004.11.030

  • [6] H. Yagi, W. Seo, K. Koumoto, Key Eng. Mater. 251, 180 (2000)

  • [7] K. Isawa, Y. Yaegashi, S. Ogota, M. Nagano, S. Sudo, K. Yamada, H. Yamauchi, Phys. Rev. B 57, 7950 (1998) http://dx.doi.org/10.1103/PhysRevB.57.7950

  • [8] R.D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976) http://dx.doi.org/10.1107/S0567739476001551

  • [9] M. Hasegawa, M.I. Batrashevich, T.R. Zhao, H. Takei, T. Goto, Phys. Rev. B 63, 184437 (2001) http://dx.doi.org/10.1103/PhysRevB.63.184437

  • [10] S. Mitsuda, Y. Matsumoto, T. Wada, K. Kurihara, Y. Urata, H. Yoshizawa, M. Mekata, Physica B 213–214, 194 (1995) http://dx.doi.org/10.1016/0921-4526(95)00102-F

  • [11] Y. Ajiro, K. Hanasaki, T. Asano, T. Takagi, M. Mekata, H. Aruga Katori, T. Goto, J. Phys. Soc. Jpn. 64 3643(1995)

  • [12] Y. Oohara, M. Mekata, T. Morishita, K. Kakurai, M. Nishi, T.R. Zhao, H. Takei, J. Phys. Soc. Jpn. 70, 3031 (2001) http://dx.doi.org/10.1143/JPSJ.70.3031

  • [13] N. Terada, S. Mitsuda, S. Suzuki, M. Fukuda, T. Kawasaki, T. Nagao, H. Aruga Katori, J. Phys. Soc. Jpn. 73, 1442 (2004) http://dx.doi.org/10.1143/JPSJ.73.1442

  • [14] N. Terada, S. Mitsuda, K. Prokes, O. Suzuki, H. Kitazawa, H.A. Katori: Phys. Rev. B 70, 174412 (2004) http://dx.doi.org/10.1103/PhysRevB.70.174412

  • [15] N. Terada, S. Mitsuda, Y. Oohara, H. Yoshizawa, H. Takei, J. Magn. Magn. Mater. 272–276, E997 (2004) Suppl. 1 http://dx.doi.org/10.1016/j.jmmm.2003.12.509

  • [16] N. Terada, T. Kawasaki, S. Mitsuda, H. Kimura, Y. Noda, J. Phys. Soc. Jpn. 74, 1561 (2005) http://dx.doi.org/10.1143/JPSJ.74.1561

  • [17] T. Okuda, Y. Beppu, Y. Fujii, T. Onoe, N. Terada, S. Miyasaka, Phys. Rev. B 77, 134423 (2008) http://dx.doi.org/10.1103/PhysRevB.77.134423

  • [18] D.O. Scanlon, A. Walsh, B.J. Morgan, G.W. Watson Phys. Rev. B 79, 035101 (2009) http://dx.doi.org/10.1103/PhysRevB.79.035101

  • [19] L. Vegard, H. Schielderup, Phys. Z. 18, 93 (1917)

  • [20] R.D. Shannon, D.B. Rogers, C.T. Prewitt, Inorg. Chem. 10, 713 (1971) http://dx.doi.org/10.1021/ic50098a011

  • [21] C.T. Prewitt, R.D. Shannon, D.B. Rogers, Inorg. Chem. 10, 719 (1971) http://dx.doi.org/10.1021/ic50098a012

  • [22] J. Tate, M.K. Jayaraj, A.D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagarajan, J.F. Wagner, R.L. Hoffman, Thin Solid Films 411, 119 (2002) http://dx.doi.org/10.1016/S0040-6090(02)00199-2

  • [23] L. Da, F. Xiaodong, D. Weiwei, D. Zanhong, T. Ruhua, Z. Shu, J. Wang, T. Wang, Y. Zhao, X. Zhu J. Phys. D: Appl. Phys. 42, 055009 (2009) http://dx.doi.org/10.1088/0022-3727/42/5/055009

  • [24] H. Kadoeaki, H. Kikuchi, Y. Ajiro, J. Phys.: Condens. Matter 2, 4485 (1990) http://dx.doi.org/10.1088/0953-8984/2/19/014

  • [25] T. Okuda, N. Jufuku, S. Hidaka, N. Terada, Phys. Rev. B. 72, 144403 (2005) http://dx.doi.org/10.1103/PhysRevB.72.144403

  • [26] N. Terada, S. Mitsuda, T. Fujii, K. Soejima, I. Doi, H.A. Katori, Y. Noda, JPSJ 74, 2604 (2005) http://dx.doi.org/10.1143/JPSJ.74.2604

  • [27] E.S.R. Gopal, Specific Heats at Low Temperatures (Plenum, New York, 1966)

  • [28] T. Okuda, N. Jufuku, S. Hidaka, N. Terada, Phys. Rev. B 72, 144403 (2005) http://dx.doi.org/10.1103/PhysRevB.72.144403

  • [29] A.P. Ramirez, B. Hessen, M. Winklemann, Phys. Rev. Lett. 84, 2957 (2000) http://dx.doi.org/10.1103/PhysRevLett.84.2957

  • [30] S. Nakatsuji, Y. Nambu, H. Tonomura, O. Sakai, S. Jonas, C. Broholm, H. Tsunetsugu, Y. Qiu, Y. Maeno, Science 309, 1697 (2005) http://dx.doi.org/10.1126/science.1114727

  • [31] H. Kadowaki, H. Kikuchi, Y. Ajiro, J. Phys.: Condens. Matter 2, 4485 (1990) http://dx.doi.org/10.1088/0953-8984/2/19/014

  • [32] Y. Oohara, S. Mitsuda, H. Yoshizawa, N. Yaguchi, H. Kuriyama, T. Asano, M. Mekata, J. Phys. Soc. Jpn. 63, 847 (1994) http://dx.doi.org/10.1143/JPSJ.63.847

  • [33] T. Okuda, Y. Beppu, Y. Fujii, T. Kishimoto, K. Uto, T. Onoe, N. Jufuku, S. Hidaka, N. Terada, S. Miyasaka, Journal of Physics: Conference Series 150, 042157 (2009) http://dx.doi.org/10.1088/1742-6596/150/4/042157

OPEN ACCESS

Journal + Issues

Search