A comparison of carbon tetrachloride decomposition using spark and barrier discharges

Bogdan Ulejczyk 1 , Krzysztof Krawczyk 1 , Michał Młotek 1 , Krzysztof Schmidt-Szałowski 1 , Łukasz Nogal 2  and Bolesław Kuca 2
  • 1 Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warszawa, Poland
  • 2 Faculty of Electrical Engineering, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warszawa, Poland


The decomposition of CCl4 in air was investigated at atmospheric pressure in two discharges. Reactors used to generate electrical discharges were powered by the same electric power supply. In both reactors, nearly 90% conversion of CCl4 was obtained. All chlorine was in the form of Cl2 in the process carried out in the barrier discharge, while in the spark discharge, COCl2 was formed. The conversion of CCl4 to COCl2 ranged from 2 to 12%. NO was formed in both discharges but the NO content in the gas leaving the reactors was 1.7–2.7% for the spark discharge and 0.045–0.06% for the barrier discharge. O3 was produced only in the barrier discharge and its content ranged from 0.1 to 0.2%.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Sun Y., Chmielewski A.G., Bułka S., Zimek Z., Influence of base gas mixture on decomposition of 1,4-dichlorobenzene in an dlectron beam generated plasma reactor, Plasma Chem. Plasma P., 2006, 26, 347-359

  • [2] Raniszewski G., Kałaciński Z., Szymański Ł., Influence of contaminants on arc properties during treatment of polluted soils in electric arc plasma, J. Adv. Oxid. Technol., 2012,15, 34-40

  • [3] Kirkpatrick M.J., Finney W.C., Locke B.R., Chlorinated organic compound removal by gas phase pulsed streamer corona electrical discharge reticulated vitreous carbon electrodes, Plasmas Polym., 2003,8, 165-177

  • [4] Han S.B., Oda T., Improvement of the energy efficiency in the decomposition of dilute trichloroethylene by the barrier discharge, IEEE T. Ind. Appl.,2005, 41, 1343-1349

  • [5] Magureanu M., Mandache N.D., Parvulescu V.I., Chlorinated organic compounds decomposition in a dielectric barrier discharge, Plasma Chem. Plasma P., 2007, 27, 679-690

  • [6] Ulejczyk B., Krawczyk K., Młotek M., Schmidt-Szałowski K., Nogal Ł., Kuca B., Decomposition of carbon tetrachloride in the reactor of dielectric barrier discharge with different power supplies, Eur. Phys. J.- Appl. Phys., 2013, 61, 24324p1-24324p7

  • [7] Krawczyk K., Jodzis S., Lamenta A., Kostka K., Ulejczyk B., Schmidt-Szałowski K., Carbon tetrachloride decomposition by pulsed spark discharges in oxidative and nonoxidative conditions, IEEE T. Plasma Sci., 2011, 39, 3203-3210

  • [8] Krawczyk K., Ulejczyk B., Decomposition of chloromethanes in gliding discharges, Plasma Chem. Plasma P.,2003, 23, 265-281.

  • [9] Indarto A., Yang D.R., Azhari C.H., Mohtar W.H.W., Choi J.W., Lee H., et al., Advanced VOCs decomposition method by gliding arc plasma, Chem. Eng. J., 2007, 131, 337-341

  • [10] Bo Z., Yan J.H., Li X.D., Chi Y., Cen K.F., Cheron B.G., Effects of oxygen and water vapor on volatile organic compounds decomposition using gliding arc gas discharge, Plasma Chem. Plasma P., 2007, 27, 546-558

  • [11] Jasiński M., Szczucki P., Dors M., Mizeraczyk J., Lubański M., Zakrzewski Z., Decomposition of fluorohydrocarbons in atmospheric-pressure flowing air using coaxial-line-based microwave torch plasma, Czech. J. Phys., 2000, 50/S3, 285-288

  • [12] Foglein K.A., Szepvolgyi J., Dombi A., Decomposition of halogenated methanes in oxygen-free gas mixtures by the use of a silent electric discharge, Chemosphere., 2003, 50, 9-13

  • [13] Indarto A., Choi J.W., Lee H., Song H.K., Discharge characteristics of a gliding-arc plasma in chlorinated methanes diluted in atmospheric air, Plasma Devices Oper., 2006, 14, 15-26

  • [14] Kovacs T., Turanyi T., Szepvolgyi J., CCl4 decomposition in RF thermal plasma in inert and oxidative environments, Plasma Chem. Plasma P., 2010, 30, 281-286

  • [15] Krawczyk K., Ulejczyk B., Plasma Chem. Plasma P., Conversion in Gliding Discharge, 2004, 24, 155-167

  • [16] Krawczyk K., Ulejczyk B., Song H.K., Lamenta A., Paluch B., Schmidt-Szałowski K., Plasma-catalytic Reactor for Decomposition of Chlorinated Hydrocarbons, Plasma Chem. Plasma P., 2009, 29, 2741

  • [17] Herron J.T, Huie R.E., Rate Constants for the Reactions of Atomic Oxygen (O 3 P) with Organic Compounds in the Gas Phase, J. Phys. Chem. Ref. Data, 1973, 2, 467-518

  • [18] DeMare G.R., Huybrechts G., Rate constants for the recombination of CCl3 radicals and for their reactions with Cl, Cl2 and HCl in the gas phase, T. Faraday Soc., 1968, 64, 1311-1318

  • [19] Emel’kin V.A., Marusin V.V., Reaction of atomic nitrogen with CCl4, SiCl4, and BCl3, Kinet. Catal.+, 1979, 20, 835-840, (in Russian)

  • [20] Atkinson R., Baulch D.L., Cox R.A., Hampson R.F. Jr., Kerr J.A., Rossi M.J., et al., J. Phys. Chem. Ref. Data, 1997, 26, 521-1011

  • [21] Lee W.J., Chen C.Y., Lin W.C., Wang Y.T., Chin C.J., Phosgene formation from the decomposition of 1,1-C2H2Cl2 contained gas in an RF plasma reaktor, J. Hazard. Mater., 1996, 48, 51-67

  • [22] Koch M., Cohn D.R., Patrick R.M., Schuetze M.P., Bromberg L., Reilly D., et al., Electron Beam Atmospheric Pressure Cold Plasma Decomposition of Carbon Tetrachloride and Trichloroethylene, Envir. Sci. Technol., 1995, 29, 2946-2952

  • [23] Penetrante B.M., Hsiao M.C., Bardsley J.N., Merrit B.T., Vogtlin G.E., Wallman P.H., et al., Electron beam and pulsed corona processing of carbon tetrachloride in atmospheric pressure gas streams, Phys. Lett. A, 1995, 209, 69-77

  • [24] Kovacs T., Turanyi T., Foglein K., Szepvolgyi J., Kinetic Modeling of the Decomposition of Carbon Tetrachloride in Thermal Plasma, Plasma Chem. Plasma P., 2005, 25, 109-119

  • [25] Indarto A., Choi J.W., Lee H., Song H.K., Decomposition of greenhouse gases by plasma, Environ. Chem. Lett., 2008, 6, 215-222

  • [26] Jeoung S.C., Choo K.Y., Benson S.W., Very-low-pressure-reactor chemiluminescence studies on nitrogen atom reactions with chloroform and deuteriochloroform, J. Phys. Chem.-US, 1991, 95, 7282-7290

  • [27] Goldfarb L., Burkholder J.B., Ravishankara A.R., Kinetics of the O + ClO Reaction, J. Phys. Chem. A, 2001, 105, 5402-5409

  • [28] Park C., Rates of reactions chlorine monoxide + chlorine monoxide .far. molecular chlorine + molecular oxygen and chlorine monoxide + atomic oxygen .far. atomic chlorine + molecular oxygen at elevated temperatures, J. Phys. Chem.-US, 1976, 80, 565-571

  • [29] Baulch D.L., Duxbury J., Grant S.J., Montague D.C., Evaluated kinetic data for high temperature reactions. Volume 4 Homogeneous gas phase reactions of halogen- and cyanide- containing species, J. Phys. Chem. Ref. Data, 1981, 10, 1-721

  • [30] Kukui A., Roggenbuck J., Schindler R.N., Mechanism and rate constants for the reactions of Cl atoms with HOCl, CH3OCl and tert-C4H9OCl, Ber. Bunsenges. Phys. Chem., 1997,101, 281-286

  • [31] Xu Z.F., Zhu R.S., Lin M.C., Ab initio studies of ClOx reactions. 3. Kinetics and mechanism for the OH + OClO reaction, J. Phys. Chem. A, 2003, 107, 1040-1049

  • [32] Lord A., Pritchard H.O., Thermodynamics of the reaction between carbon dioxide and carbon tetrachloride, J. Chem. Thermodyn., 1969, 1, 495-498

  • [33] Cox R.A., Derwent R.G., A.E.J. Eggleton, H.J. Reid, Kinetics of chlorine oxide radicals using modulated photolysis. Part 2 -ClO and ClOO radical kinetics in the photolysis of Cl2+O2+N2 mixtures, J. Chem. Soc. Faraday T. 1, 1979, 75, 1648-1666

  • [34] Davies P.B., Thrush B.A., Reactions of oxygen atoms with hydrogen cyanide, cyanogen chloride and cyanogen bromide, T. Faraday Soc., 1968, 64, 1836-1843

  • [35] Becker K.H., Kurtenbach R., Schmidt F., Wiesen P., Kinetics of the NCO radical reacting with atoms and selected molecules, Combust. Flame, 2000, 120, 570-577

  • [36] Aleksandrov N. L., Bazelyan E. M., Ionization processes in spark discharge plasmas, Plasma Sources Sci. T., 1999, 8, 285-294

  • [37] Kado S., Sekine Y., Nozaki T., Okazaki K., Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion, Catal. Today, 2004, 89, 47-55

  • [38] Bye C.A., Scheeline A., Electron density profiles in single spark discharges, J. Quant. Spectrosc. Ra., 1995, 53, 75-93.

  • [39] Kogelschatz U., Elianson B., Egli W., Dielectric-barrier discharges. Principle and applications, J. Phys. IV, 1997, 7, C4-47-C4-66

  • [40] Jodzis S., Temperature effects under ozone synthesis process conditions, Eur. Phys. J.- Appl. Phys., 2013, 61, 24319p1-24319p9


Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.