FT-Raman spectroscopy as a tool in evaluation the response of plants to drought stress


The aim of study was to evaluate the usefulness of FT-Raman spectroscopy in assessing stress-induced metabolic changes in plants. 20-d-old optimally watered plants of soybean were exposed to drought. Metabolic changes in optimally watered and drought-stressed plants were monitored using FT-Raman spectroscopy. In parallel, analyses were carried out of fatty acid composition and pigment content using analytical methods. These compounds are associated with the response of plants to environmental stress. While fatty acid assays in study were inconclusive, the pigment content analysis gave promising results. FT-Raman experiment demonstrated a decrease in carotenoid content in leaf, as a result of drought, which was confirmed by spectrophotometric analysis. In addition to the analysis of aforementioned compounds, FT-Raman spectroscopy allowed the simultaneous observation of a wider spectrum of compounds scattering the radiation in the leaves tested, and their subsequent comparative analysis. The impact of drought on metabolism of soybean was clearly visible on spectra and confirmed using cluster analysis. The technical problem of the influence of leaf water content on measurements, which appeared in studies, will be discussed. To conclude, FT-Raman spectroscopy may be a good complement to other non-invasive methods, e.g., fluorescent methods, in assessing the stress-induced damage of crops.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] P. Rodziewicz, B. Swarcewicz, K. Chmielewska, A. Wojakowska, M. Stobiecki, Acta Physiol. Plant. 36, 1 (2014)

  • [2] T. Hájek, L. Adamec, Biologia 65, 69 (2010)

  • [3] J. Peñuelas, I. Filella, Trends Plant Sci. 3, 151 (1998)

  • [4] A. Janeczko, J. Oklešťková, A. Siwek, M. Dziurka, E. Pociecha, M. Kocurek, O. Novák, J Steroid Biochem. Mol. Biol. 138, 384 (2013)

  • [5] B.N. Smith, R.S. Criddle, L.D. Hansen, J. Plant Biol. 27, 89 (2000)

  • [6] A. Skoczowski, M. Troć, Isothermal calorimetry and Raman spectroscopy to study response of plants to abiotic and biotic stress. In: Molecular Stress Physiology of Plants (Springer, 2013)

  • [7] C. Frankenberg, J. Berry, L.Guanter, J.Joiner, SPIE Newsroom: 10.1117/2.1201302.004725. https://spie.org/x92267.xml (2013)

  • [8] B. Schrader, H. Schulz, G.N. Andreev, H.H. Klump, J. Sawatzki, Talanta 53, 35 (2000)

  • [9] H. Schulz, M. Baranska, Vib. Spectrosc. 43, 13 (2007)

  • [10] N. Gierlinger, M. Schwanninger, Spectroscopy 21, 69 (2007)

  • [11] R.S. Das, Y.K. Agrawal, Vib. Spectrosc. 57, 163 (2011)

  • [12] M. Troć, A. Skoczowski, M. Barańska, J. Therm. Anal. Calorim. 95, 727 (2009)

  • [13] A. Skoczowski, M. Troć, A. Baran, M. Baranska, J. Therm. Anal. Calorim. 104, 187 (2011)

  • [14] K.S. Liu, Chemistry and nurtitional value of soybean components. In Soybean: Chemistry, Technology, and Utilization (Chapman & Hall, New York, 1997)

  • [15] Z. Wu, D. Schenk-Hamlin, W. Zhan, D.W. Ragsdale, G.E. Heimpel, Ann. Entomol. Soc. Am. 97, 209 (2004)

  • [16] S. Munné-Bosch, L. Alegre, Planta, 210, 925 (2000)

  • [17] A.K. Parida, V.S. Dagaonkar, M.S. Phalak, G.V. Umalkar, L.P. Aurangabadkar, Plant Biotechnol. Rep. 1, 37 (2007)

  • [18] A. Janeczko, K. Hura, A. Skoczowski, I. Idzik, J. Biesaga-Kościelniak, E. Niemczyk, Acta Physiol. Plant. 31, 71 (2009)

  • [19] H.K. Lichtenthaler, A.R. Wellburn, Biochem. Soc. T. 603, 590 (1983)

  • [20] X. Xiao, X. Xu, F. Yang, Silva Fenn. 42, 705 (2008)

  • [21] R. Withnall, B.Z. Chowdhry, J. Silver, H.G.M. Edwards, L.F.C. de Oliveira, Spectrochim. Acta A, 59, 2207, (2003)

  • [22] R. Baranski, M. Baranska, H. Schulz, Planta 222, 448 (2005)

  • [23] M. Baranska, H. Schulz, E. Joubert, M. Manley, Anal. Chem. 78, 7716 (2006)

  • [24] M. Baranska, R. Baranski, H. Schulz, T. Nothnagel, Planta 224, 1028, (2006)

  • [25] E.H. Papaioannou, M. Liakopoulou-Kyriakides, D. Christofilos, I. Arvanitidis, G. Kourouklis, Appl. Biochem. Biotechnol. 159, 478 (2009)

  • [26] A. Janeczko, J. Biesaga-Kościelniak, M. Dziurka, J. Oklešťková, M. Kocurek, G. Szarek-Łukaszewska, Z. Janeczko, Acta Sci. Pol. (Agricultura) 10, 33 (2011)

  • [27] I. Toumi, M. Gargouri, I. Nouairi, P.N. Moschou, A. Ben Salem-Fnayou, A. Mliki, M. Zarrouk, A. Ghorbel, Biol. Plantarum 52, 161 (2008)

  • [28] A. Gigon, A.R. Matos, D. Laffray, Y. Zuily-Fodil, A.T. Pham-Thi, Ann. Bot. 94, 345 (2004)

  • [29] D. Zhong, H. Du, Z. Wang, J. Am. Soc. Hortic. Sci. 136, 35 (2011)

  • [30] F.I. Collins, V.E. Sedgwick, J. Am. Oil Chem. Soc. 36, 641 (1959)

  • [31] N. Bellaloui, Am. J. Plant Sci. 2, 692 (2011)

  • [32] M.G. Kleinschmidt, V.A. McMahon, Plant Physiol. 46, 286 (1970)

  • [33] M. Żuk, L. Dymińska, A. Kulma, A. Boba, A. Prescha, J. Szopa, M. Mączka, A. Zając, K. Szołtysek, J. Hanuza, Spectrochim. Acta A 78,1080 (2011)

  • [34] M. Troć, Impact of herbal extract with different allelopathic potential on metabolism of mustard, rape, wheat and clover seedlings. PhD Thesis. (Krakow, in Polish, 2011)


Journal + Issues

Open Chemistry is a peer-reviewed, open access journal that publishes original research, reviews and short communications in the fields of chemistry in an ongoing way. Our central goal is to provide a hub for researchers working across all subjects to present their discoveries, and to be a forum for the discussion of the important issues in the field.