Magnetic nano- and microparticles in biotechnology


Both synthetic and biologically produced magnetic nano- and microparticles exhibit several types of responses to external magnetic field which have been already employed in various areas of biosciences, biotechnology, medicine, environmental technology, etc. This short review shows selected important biotechnological applications of magnetic particles, and the biological processes leading to biogenic magnetic particles formation.

  • [1] Akgöl, S., Kaçar, Y., Denizli, A., & Arica, M. Y. (2001). Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chemistry, 74, 281–288. DOI: 10.1016/S0308-8146(01)00150-9.

  • [2] Antequera, Y. S., Mykhaylyk, O., Hammerschmid, E., & Plank, C. (2007). Magselectofection: Combined magnetic cell separation and magnetofection. Human Gene Therapy, 18, 1048–1048. DOI: 10.1089/hum.2007.1029.

  • [3] Arica, M. Y., Yavuz, H., Patir, S., & Denizli, A. (2000). Immobilization of glucoamylase onto spacer-arm attached magnetic poly(methylmethacrylate) microspheres: characterization and application to a continuous flow reactor. Journal of Molecular Catalysis B: Enzymatic, 11, 127–138. DOI: 10.1016/S1381-1177(00)00223-X.

  • [4] Bahar, T., & Celebi, S. S. (1998). Characterization of glucoamylase immobilized on magnetic poly(styrene) particles. Enzyme and Microbial Technology, 23, 301–304. DOI: 10.1016/S0141-0229(98)00048-9.

  • [5] Bazylinski, D. A., Frankel, R. B., & Konhauser, K. O. (2007). Modes of biomineralization of magnetite by microbes. Geomicrobiology Journal, 24, 465–475. DOI: 10.1080/01490450 701572259.

  • [6] Bazylinski, D. A., & Schübbe, S. (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62, 21–62. DOI: 10.1016/S0065-2164(07)62002-4.

  • [7] Berensmeier, S. (2006). Magnetic particles for the separation and purification of nucleic acids. Applied Microbiology and Biotechnology, 73, 495–504. DOI: 10.1007/s00253-006-0675-0.

  • [8] Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M., & Sastry, M. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135–141. DOI: 10.1002/smll.200500180.

  • [9] Bilkova, Z., Slovakova, M., Lycka, A., Horak, D., Lenfeld, J., Turkova, J., & Churacek, J. (2002). Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres. Journal of Chromatography B, 770, 25–34. DOI: 10.1016/S0378-4347(01)00439-X.

  • [10] Bruno, L. M., Coelho, J. S., Melo, E. H. M., & Lima, J. L. (2005). Characterization of Mucor miehei lipase immobilized on polysiloxane-polyvinyl alcohol magnetic particles. World Journal of Microbiology & Biotechnology, 21, 189–192. DOI: 10.1007/s11274-004-3321-y.

  • [11] Coleman, D. J., Chick, K. E., & Nye, K. J. (1995). An evaluation of immunomagnetic separation for the detection of salmonellas in raw chicken carcasses. Letters in Applied Microbiology, 21, 152–154. DOI: 10.1111/j.1472-765X.1995.tb01029.x.

  • [12] De Cuyper, M., De Meulenaer, B., Van der Meeren, P., & Vanderdeelen, J. (1995). Enzymatic activity of cytochrome c-oxidase inserted into magnetoliposomes differing in surface charge density. Biocatalysis and Biotransformation, 13, 77–87. DOI: 10.3109/10242429509015214.

  • [13] Demirel, D., Ozdural, A. R., & Mutlu, M. (2004). Performance of immobilized Pectinex Ultra SP-L on magnetic duolitepolystyrene composite particles — Part 1: A batch reactor study. Journal of Food Engineering, 64, 417–421. DOI: 10.1016/j.jfoodeng.2003.09.018.

  • [14] Duffy, G., Sheridan, J. J., Hofstra, H., McDowall, D. A., & Blair, I. S. (1997). A comparison of immunomagnetic and surface adhesion immunofluorescent techniques for the rapid detection of Listeria monocytogenes and Listeria innocua in meat. Letters in Applied Microbiology, 24, 445–450. DOI: 10.1046/j.1472-765X.1997.00139.x.

  • [15] Dunnill, P., & Lilly, M. D. (1974). Purification of enzymes using magnetic bio-affinity materials. Biotechnology and Bioengineering, 16, 987–990. DOI: 10.1002/bit.260160710.

  • [16] Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685. DOI: 10.1021/ja021223n.

  • [17] Ennis, M. P., & Wisdom, G. B. (1991). A magnetizable solid phase for enzyme extraction. Applied Biochemistry and Biotechnology, 30, 155–164. DOI: 10.1007/BF02921683.

  • [18] Franzreb, M., Siemann-Herzberg, M., Hobley, T. J., & Thomas, O. R. T. (2006). Protein purification using magnetic adsorbent particles. Applied Microbiology and Biotechnology, 70, 505–516. DOI: 10.1007/s00253-006-0344-3.

  • [19] Grant, I. R., Pope, C. M., O’Riordan, L. M., Ball, H. J., & Rowe, M. T. (2000). Improved detection of Mycobacterium avium subsp. paratuberculosis in milk by immunomagnetic PCR. Veterinary Microbiology, 77, 369–378. DOI: 10.1016/S0378-1135(00)00322-9.

  • [20] Guo, Z., Bai, S., & Sun, Y. (2003). Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres. Enzyme and Microbial Technology, 32, 776–782. DOI: 10.1016/S0141-0229(03)00051-6.

  • [21] Hendrix, P. G., Hoylaerts, M. F., Nouwen, E. J., Van de Voorde, A., & De Broe, M. E. (1992). Magnetic beads in suspension enable a rapid and sensitive immunodetection of human placental alkaline phosphatase. European Journal of Clinical Chemistry and Clinical Biochemistry, 30, 343–347.

  • [22] Hirschbein, B. L., & Whitesides, G. M. (1982). Affinity separation of enzymes from mixtures containing suspended solids: Comparisons of magnetic and nonmagnetic techniques. Applied Biochemistry and Biotechnology, 7, 157–176. DOI: 10.1007/BF02798294.

  • [23] Horak, D., Rittich, B., Safar, J., Spanova, A., Lenfeld, J., & Benes, M. J. (2001). Properties of RNase A immobilized on magnetic poly(2-hydroxyethyl methacrylate) microspheres. Biotechnology Progress, 17, 447–452. DOI: 10.1021/bp0100171.

  • [24] Hubbuch, J. J., & Thomas, O. R. T. (2002). High-gradient magnetic affinity separation of trypsin from porcine pancreatin. Biotechnology and Bioengineering, 79, 301–313. DOI: 10.1002/bit.10285.

  • [25] Chapman, P. A., & Cudjoe, K. S. (2001). Evaluation of Beadretriever™, an automated system for concentration of Escherichia coli O157 from enrichment cultures by immunomagnetic separation. Journal of Rapid Methods and Automation in Microbiology, 9, 203–214. DOI: 10.1111/j.1745-4581.2001.tb00243.x.

  • [26] Chapman, P. A., Ellin, M., & Ashton, R. (2001). A comparison of immunomagnetic separation and culture, RevealTM and VIP™ for the detection of E. coli O157 in enrichment cultures of naturally-contaminated raw beef, lamb and mixed meat products. Letters in Applied Microbiology, 32, 171–175. DOI: 10.1046/j.1472-765x.2001.00883.x.

  • [27] Inada, Y., Matsuswma, A., Kodera, Y., & Nishimura, H. (1990). Polyethylene glycol (PEG)-protein conjugates: Application to biomedical and biotechnological processes. Journal of Bioactive and Compatible Polymers, 5, 343–364. DOI: 10.1177/088391159000500309.

  • [28] Jang, K.-H., Song, K.-B., Park, B.-S., Kim, C. H., Chung, B. H., Choue, R. W., Lee, K. S., Lee, C., Chun, U.-H., & Rhee, S. K. (2001). Levan production by use of the recombinant levansucrase immobilized on titanium-activated magnetite. Process Biochemistry, 37, 339–343. DOI: 10.1016/S0032-9592(01)00215-1.

  • [29] Karpíšková, R. & Holasová, M. (1999). The use of immunomagnetic separation in detection of Salmonella and Listeria from foodstuffs. Veterinární Medicína, 44, 225–228. (in Czech)

  • [30] Knight, K., Pimentel, M. D., de Morais, M. M. C., Ledingham, W. M., de Lima Filho, J. L., & Maia, M. D. (2000). Immobilization of lipase from Fusarium solani FS1. Brazilian Journal of Microbiology, 31, 220–222. DOI: 10.1590/S1517-83822000000300013.

  • [31] Lamoureux, M., MacKay, A., Messier, S., Fliss, I., Blais, B. W., Holley, R. A., & Simard, R. E. (1997). Detection of Campylobacter jejuni in food and poultry viscera using immunomagnetic separation and microtitre hybridization. Journal of Applied Microbiology, 83, 641–651. DOI: 10.1046/j.1365-2672.1997.00273.x.

  • [32] Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L. V., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 108, 2064–2110. DOI: 10.1021/cr068445e.

  • [33] Liao, M. H., & Chen, D. H. (2001). Immobilization of yeast alcohol dehydrogenase on magnetic nanoparticles for improving its stability. Biotechnology Letters, 23, 1723–1727. DOI: 10.1023/A:1012485221802.

  • [34] Matsunaga, T., Okamura, Y., & Tanaka, T. (2004). Biotechnological application of nano-scale engineered bacterial magnetic particles. Journal of Materials Chemistry, 14, 2099–2105. DOI: 10.1039/b404844j.

  • [35] Megens, M., & Prins, M. (2005). Magnetic biochips: a new option for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 702–708. DOI: 10.1016/j.jmmm.2005.02.046.

  • [36] Meyer, A., Hansen, D. B., Gomes, C. S. G., Hobley, T. J., Thomas, O. R. T., & Franzreb, M. (2005). Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey. Biotechnology Progress, 21, 244–254. DOI: 10.1021/bp049656c.

  • [37] Mosbach, K., & Andersson, L. (1977). Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature, 270, 259–261. DOI: 10.1038/270259a0.

  • [38] Mosiniewicz-Szablewska, E., Safarikova, M., & Safarik, I. (2007). Magnetic studies of ferrofluid-modified spruce sawdust. Journal of Physics D: Applied Physics, 40, 6490–6496. DOI: 10.1088/0022-3727/40/21/003.

  • [39] Nishiya, Y., Hibi, T., & Oda, J. L. (2002). A purification method of the diagnostic enzyme Bacillus uricase using magnetic beads and non-specific protease. Protein Expression and Purification, 25, 426–429. DOI: 10.1016/S1046-5928(02)00022-0.

  • [40] Odabasi, M., & Denizli, A. (2004). Cibacron blue F3GA incorporated magnetic poly(2-hydroxyethyl methacrylate) beads for lysozyme adsorption. Journal of Applied Polymer Science, 93, 719–725. DOI 10.1002/app.20485.

  • [41] Olsvik, O., Popovic, T., Skjerve, E., Cudjoe, K. S., Hornes, E., Ugelstad, J., & Uhlen, M. (1994). Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews, 7, 43–54.

  • [42] Radu, S., Ling, O.W., Rusul, G., Karim, M. I. A., & Nishibuchi, M. (2001). Detection of Escherichia coli O157: H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. Journal of Microbiological Methods, 46, 131–139. DOI: 10.1016/S0167-7012(01)00269-X.

  • [43] Ripabelli, G., Sammarco, M. L., Ruberto, A., Iannitto, G., & Grasso, G. M. (1997). Immunomagnetic separation and conventional culture procedure for detection of naturally occurring Salmonella in raw pork sausages and chicken meat. Letters in Applied Microbiology, 24, 493–497. DOI: 10.1046/j.1472-765X.1997.00159.x.

  • [44] Safarik, I., Lunackova, P., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007a). Adsorption of water-soluble organic dyes on ferrofluid-modified sawdust. Holzforschung, 61, 247–253. DOI: 10.1515/HF.2007.060.

  • [45] Safarik, I., Rego, L. F. T., Borovska, M., Mosiniewicz-Szablewska, E., Weyda, F., & Safarikova, M. (2007b). New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology, 40, 1551–1556. DOI: 10.1016/j.enzmictec.2006.10.034.

  • [46] Safarik, I., Sabatkova, Z., Tokar, O., & Safarikova, M. (2007c). Magnetic cation exchange isolation of lysozyme from native hen egg white. Food Technology and Biotechnology, 45, 355–359.

  • [47] Safarik, I., & Safarikova, M. (1993). Batch isolation of hen egg white lysozyme with magnetic chitin. Journal of Biochemical and Biophysical Methods, 27, 327–330. DOI: 10.1016/0165-022X(93)90013-E.

  • [48] Safarik, I., & Safarikova, M. (1997). Overview of magnetic separations used in biochemical and biotechnological applications. In U. Hafeli, W. Schutt, J. Teller, & M. Zborowski (Eds.), Scientific and clinical applications of magnetic carriers (pp. 323–340). New York, London: Plenum Press.

  • [49] Safarik, I., & Safarikova, M. (1999). Use of magnetic techniques for the isolation of cells. Journal of Chromatography B, 722, 33–53. DOI: 10.1016/S0378-4347(98)00338-7.

  • [50] Safarik, I., & Safarikova, M. (2002). Magnetic nanoparticles and biosciences. Monatshefte für Chemie, 133, 737–759. DOI: 10.1007/s007060200047.

  • [51] Safarik, I., & Safarikova, M. (2004). Magnetic techniques for the isolation and purification of proteins and peptides. Bio-Magnetic Research and Technology, 2, 7. DOI: 10.1186/1477-044X-2-7.

  • [52] Safarik, I., & Safarikova, M. (2007). Magnetically modified microbial cells: A new type of magnetic adsorbents. China Particuology, 5, 19–25. DOI: 10.1016/j.cpart.2006.12.003.

  • [53] Safarik, I., Safarikova, M., & Forsythe, S. J. (1995). The application of magnetic separations in applied microbiology. Journal of Applied Bacteriology, 78, 575–585. DOI: 10.1111/j.1365-2672.1995.tb03102.x.

  • [54] Sakai, Y., Tamiya, Y., & Takahashi, F. (1994). Enhancement of ethanol formation by immobilized yeast containing iron powder or Ba-ferrite due to eddy current or hysteresis. Journal of Fermentation and Bioengineering, 77, 169–172. DOI: 10.1016/0922-338X(94)90318-2.

  • [55] Schillinger, U., Brill, T., Rudolph, C., Huth, S., Gersting, S., Krotz, F., Hirschberger, J., Bergemann, C., & Plank, C. (2005). Advances in magnetofection — magnetically guided nucleic acid delivery. Journal of Magnetism and Magnetic Materials, 293, 501–508. DOI: 10.1016/j.jmmm.2005.01.032.

  • [56] Sinclair, B. (1998). To bead or not to bead: Applications of magnetic bead technology. Scientist, 12(13), 17–23.

  • [57] Takahashi, F., Sakai, Y., & Mizutani, Y. (1997). Immobilized enzyme reaction controlled by magnetic heating: γ-Fe2O3-loaded thermosensitive polymer gels consisting of N-isopropylacrylamide and acrylamide. Journal of Fermentation and Bioengineering, 83, 152–156. DOI: 10.1016/S0922-338X(97)83574-X.

  • [58] Tatsumi, K., Wada, S., & Ichikawa, H. (1996). Removal of chlorophenols from wastewater by immobilized horseradish peroxidase. Biotechnology and Bioengineering, 51, 126–130. DOI: 10.1002/(SICI)1097-0290(19960705)51:1〈126::AIDBIT15〉 3.0.CO;2-O.<126::AID-BIT15>3.0.CO;2-O

  • [59] Tong, X. D., Xue, B., & Sun, Y. (2001). A novel magnetic affinity support for protein adsorption and purification. Biotechnology Progress, 17, 134–139. DOI: 10.1021/bp000134g.

  • [60] Wang, S. X., Bae, S. Y., Li, G. X., Sun, S. H., White, R. L., Kemp, J. T., & Webb, C. D. (2005). Towards a magnetic microarray for sensitive diagnostics. Journal of Magnetism and Magnetic Materials, 293, 731–736. DOI: 10.1016/j.jmmm.2005.02.054.

  • [61] Wang, S. X., & Li, G. (2008). Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Transactions on Magnetics, 44, 1687–1702. DOI: 10.1109/TMAG.2008.920962.

  • [62] Yang, C. L., Guan, Y. P., Xing, J. M., & Liu, H. Z. (2006). Development of superparamagnetic functional carriers and application for affinity separation of subtilisin Carlsberg. Polymer, 47, 2299–2304. DOI: 10.1016/j.polymer.2006.02.013.

  • [63] Yang, C. L., Xing, J. M., Guan, Y. P., & Liu, H. Z. (2006). Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth. Applied Microbiology and Biotechnology, 72, 616–622. DOI: 10.1007/s00253-006-0484-5.

  • [64] Yavuz, H., Denizli, A., Gungunes, H., Safarikova, M., & Safarik, I. (2006). Biosorption of mercury on magnetically modified yeast cells. Separation and Purification Technology, 52, 253–260. DOI: 10.1016/j.seppur.2006.05.001.

  • [65] Yu, L. S. L., Uknalis, J., & Tu, S. I. (2001). Immunomagnetic separation methods for the isolation of Campylobacter jejuni from ground poultry meats. Journal of Immunological Methods, 256, 11–18. DOI: 10.1016/S0022-1759(01)00372-6.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues