Enzymatic sensor of putrescine with optical oxygen transducer – mathematical model of responses of sensitive layer

Lucie Maixnerová 1 , Alexandar Horvitz 1 , Gabriela Kuncová 1 , Michal Přibyl 2 , Marek Šebela 3  and Martin Koštejn 1
  • 1 Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals, ASCR, Rozvojová 135, 165 00 Prague 6, Czech Republic
  • 2 Department of Chemical Engineering, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
  • 3 Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic


A biosensor for putrescine containing a sensing layer with an optical oxygen probe based on ruthenium complex and the enzyme diamine oxidase from pea is described. The diamine oxidase was pre-immobilised on broken micro-beads modified with a ferrofluid. The pre-immobilised enzyme and ruthenium complex were both incorporated into the UV-cured inorganic-organic hybrid polymer ORMOCER® and deposited on a lens to form a sensitive layer of 210 μm in thickness. The sensitivity to the putrescine concentration determined under air saturation was between 3.50 μs L mmol−1 and 4.50 μs L mmol−1 in a hundred experiments conducted intermittently over a one year period. With the oxygen concentration increasing from 10 % to 100 % of DO (dissolved oxygen), the biosensor sensitivity decreased from 6.87 μs L mmol−1 to 0.70 μs L mmol−1 and its dynamic range increased from 0.10 mmol L−1 to 1.75 mmol L−1. To estimate the behaviour of the putrescine sensor in parametric space, a mathematical model of the reaction-transport processes inside the sensing layer was developed. The model revealed the qualitative relations between the sensor analytical features, the characteristics of the sensitive layer and concentrations of substrates. The results of the mathematical modelling may serve as guidelines in the design of optodes for specific applications.

  • Akin, M., Prediger, A., Yuksel, M., Höpfner, T., Demirkol, D. O., Beutel, S., Timur, S., & Scheper, T. (2011). A new set up for multi-analyte sensing: At-line bio-process monitoring.

  • Biosensors and Bioelectronics, 26, 4532-4537. DOI: 10.1016/j.bios.2011.05.018.

  • Bóka, B., Adanyi, N., Virag, D., Sebela, M., & Kiss, A. (2012). Spoilage detection with biogenic amine biosensors, comparison of different enzyme electrodes. Electroanalysis, 24, 181-186. DOI: 10.1002/elan.201100419.

  • Brown, J. Q., & McShane, M. J. (2006). Modeling of spherical fluorescent glucose microsensor systems: Design of enzymatic smart tattoos. Biosensors and Bioelectronics, 21, 1760-1769. DOI: 10.1016/j.bios.2005.08.013.

  • Cai, Y. K., Shinar, R., Zhou, Z. Q., & Shinar, J. (2008). Multianalyte sensor array based on an organic light emitting diode platform. Sensors and Actuators B: Chemical, 134, 727-735. DOI: 10.1016/j.snb.2008.06.019.

  • Healey, B. G., Li, L., &Walt, D. R. (1997). Multianalyte biosensors on optical imaging bundles. Biosensors and Bioelectronics, 12, 521-529. DOI: 10.1016/s0956-5663(97)00009-2.

  • Höber, R., Hitchcock, D. I., Bateman, J. B., Goddard, D. R., & Fenn, W. O. (1946). Physical chemistry of cells and tissues. The Journal of Physical Chemistry, 50, 386-387. DOI: 10.1021/j150448a010.

  • Illanes, A., Altamirano, C., & Wilson, L. (2008). Homogeneous enzyme kinetics. In A. Illanes (Ed.), Enzyme biocatalysis (pp. 129-130). Houten, The Netherlands: Springer. DOI: 10.1007/978-1-4020-8361-7 3.

  • Kumar, V., Dooley, D. M., Freeman, H. C., Guss, J. M., Harvey, I., McGuirl, M. A., Wilce, M. C. J., & Zubak, V. M. (1996). Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 ˚A resolution. Structure, 4, 943-955. DOI: 10.1016/s0969-2126(96)00101-3.

  • Kuncová, G., & Šandova, M. (2007). Glucose optical sensor for bioreactors [motion picture]. Czech Republic, _c Sanda, s.r.o. https://www.youtube.com/watch?v=NTJwmRK3oZ4 and http://ds-uchp-backup.asuch.cas.cz:5000/fbsharing/ilGRdL0X

  • Li, X. P., & Rosenzweig, Z. (1997). A fiber optic sensor for rapid analysis of bilirubin in serum. Analytica Chimica Acta, 353, 263-273. DOI: 10.1016/s0003-2670(97)87785-9.

  • Marazuela, M. D., Cuesta, B., Moreno-Bondi, M. C., & Quejido, A. (1997). Free cholesterol fiber-optic biosensor for serum samples with simplex optimization. Biosensors and Bioelectronics, 12, 233-240. DOI: 10.1016/s0956-5663(97)85341-9.

  • Meškauskas, T., Ivanauskas F., & Laurinavicius, V. (2013). Degradation of substrate and/or product: mathematical modeling of biosensor action. Journal of Mathematical Chemistry, 51, 2491-2502. DOI: 10.1007/s10910-013-0223-y.

  • Mitsubayashi, K., Kon, T., & Hashimoto, Y. (2003). Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber. Biosensors and Bioelectronics, 19, 193-198. DOI: 10.1016/s0956-5663(03)00218-5.

  • Netrabukkana, R., Lourvanij, K., & Rorrer, G. L. (1996). Diffusion of glucose and glucitol in microporous and mesoporous silicate/aluminosilicate catalysts. Industrial & Engineering Chemistry Research, 35, 458-464. DOI: 10.1021/ie950200x.

  • Pasic, A., Koehler, H., Klimant, I., & Schaupp, L. (2007). Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sensors and Actuators B: Chemical, 122, 60-68. DOI: 10.1016/j.snb.2006.05.010.

  • Pierangelli, E., Levin, V. A., Seidenfeld, J., & Marton, L. J. (1981). Putrescine diffusion in cat brain and capillary permeability in rat brain: Relation to CSF putrescine levels in brain tumor patients. European Journal of Cancer, 17, 143-147. DOI: 10.1016/0014-2964(81)90028-1.

  • Pospiskova, K., Safarik, I., Sebela, M., & Kuncova, G. (2013). Magnetic particles-based biosensor for biogenic amines using an optical oxygen sensor as a transducer. Microchimica Acta, 180, 311-318. DOI: 10.1007/s00604-012-0932-0.

  • Psoma, S. D., van der Wal, P. D., & de Rooij, N. F. (2011). Low fluorescence enzyme matrices based on microfabricated SU-8 films for a phenol micro-biosensor application. Procedia Engineering, 25, 1369-1372. DOI: 10.1016/j.proeng.2011.12. 338.

  • Rassaei, L., Olthuis, W., Tsujimura, S., Sudhölter, E. J. R., & van den Berg, A. (2014). Lactate biosensors: current status and outlook. Analytical and Bioanalytical Chemistry, 406, 123-137. DOI: 10.1007/s00216-013-7307-1.

  • Romero, M. R., Baruzzi, A. M., & Garay, F. (2012). Mathematical modeling and experimental results of a sandwich-type amperometric biosensor. Sensors and Actuators B: Chemical, 162, 284-291. DOI: 10.1016/j.snb.2011.12.079.

  • Scully, P. J., Betancor, L., Bolyo, J., Dzyadevych, S., Guisan, J. M., Fernandez-Lafuente, R., Jaffrezic-Renault, N., Kuncova, G., Matějec, V., O’Kennedy, B., Podrazky, O., Rose, K., Sasek, L., & Young, J. S. (2011). Optical fibre biosensors using enzymatic transducers to monitor glucose. Measurement Science and Technology, 18, 3177-3186. DOI: 10.1088/0957-0233/18/10/s20.

  • Shrivastava, A., & Gupta, V. B. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2, 21-25. DOI: 10.4103/2229-5186.79345.

  • Steiner, M. S., Duerkop, A., & Wolfbeis, O. S. (2011). Optical methods for sensing glucose. Chemical Society Reviews, 40, 4805-4839. DOI: 10.1039/c1cs15063d.

  • Štikonien˙e, O., Ivanauskas, F., & Laurinavicius, V. (2010). The influence of external factors on the operational stability of the biosensor response. Talanta, 81, 1245-1249. DOI: 10.1016/j.talanta.2010.02.016.

  • Wang, X. D., & Wolfbeis, O. S. (2014). Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chemical Society Reviews, 43, 3666-3761. DOI: 10.1039/c4cs00039k.

  • Wolfbeis, O. S. (1991). Optical sensing based on analyte recognition by enzymes, carriers and molecular interactions. Analytica Chimica Acta, 250, 181-201. DOI: 10.1016/0003-2670(91)85071-y.

  • Wu, X. J., & Choi, M. M. F. (2003). Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Analytical Chemistry, 75, 4019-4027. DOI: 10.1021/ac020736+.

  • Wu, X. J., & Choi, M. M. F. (2004). Spongiform immobilization architecture of ionotropy polymer hydrogel coentrapping alcohol oxidase and horseradish peroxidase with octadecylsilica for optical biosensing alcohol in organic solvent. Analytical Chemistry, 76, 4279-4285. DOI: 10.1021/ac049799d.

  • Wu, X. J., Choi, M. M. F., Chen, C. S., & Wu, X. M. (2007). On-line monitoring of methanol in n-hexane by an organicphase alcohol biosensor. Biosensors and Bioelectronics, 22, 1337-1344. DOI: 10.1016/j.bios.2006.06.002.

  • Xiao, D., & Choi, M. M. F. (2002). Aspartame optical biosensor with bienzyme-immobilized eggshell membrane and oxygensensitive optode membrane. Analytical Chemistry, 74, 863-870. DOI: 10.1021/ac001097a.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues