Electrode and electrodeless impedance measurement for determination of orange juices parameters

Romana Seidlová 1 , Jaroslav Poživil 2 , Jaromír Seidl 3 , Stanislav Ďaďo 4 , Petra Průšová 5 ,  and Lukáš Malec 6
  • 1 Department of Computing and Control Engineering, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague 6, Czech Republic
  • 2 Department of Information Technologies and Analytical Methods, University of Business in Prague,
  • 3 Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 6, 166 28 Prague 6, Czech Republic
  • 4 Departments of Measurement, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic
  • 5 Department of Food Preservation, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 6, 166 28 Prague 6, Czech Republic
  • 6 Department of Information Technologies and Analytical Methods, University of Business in Prague, Spálená 76, 110 00 Prague 1, Czech Republic


Electrical impedance spectroscopy (EIS) is a non-destructive, rapid and real-time measurement method which does not require special high-tech measurement devices and can be applied to food quality assessment. This method is rapid, effective and affords low-cost investigation of the product. The conventional EIS method requires a set of metal electrodes in direct contact with the medium to be measured. The complicated electrochemical processes on the electrodes-electrolyte interface could substantially affect the value of the impedance measured. The present study sought to explore the possibilities of using the impedance method for quality control in orange juices, to introduce the electrodeless method of electrolyte impedance measurement and to compare this with the conventional impedance methods. The electrical properties of the orange juices were described with the help of an equivalent circuit. An equivalent circuit was designed with constant phase element approximation. The values of the equivalent circuit components were fitted using a non-standard algorithm inspired by the behaviour of actual ant colonies. Implementing the electrodeless method obviated the electrodes phenomena effects and the behaviour of the electrolyte is similar to inductance. The proposed electrodeless method is generally applicable to measuring the electrochemical properties of electrolytes.

  • Ando, Y., Mizutani, K., & Wakatsuki, N. (2014). Electrical impedance analysis of potato tissues during drying. Journal of Food Engineering, 121, 24-31. DOI: 10.1016/j.jfoodeng. 2013.08.008.

  • Badhe, S. G., & Helambe, S. N. (2013). Electrical impedance analysis of commonly used preservatives NaCl and C12H22 O11. Science Research Reporter, 3, 239-242.

  • Bardos, A., Zare, R. N., & Markides, K. (2005). Inductive behavior of electrolytes in AC conductance mea surements. Chemical Physics Letters, 402, 274-278. DOI: 10.1016/j.cplett.2004.12.047.

  • Bertemes-Filho, P., Valicheski, R., Pereira, R. M., & Paterno, A. S. (2010). Bioelectrical impedance analysis for bovine milk: Preliminary results. Journal of Physics: Conference Series, 224, 012133. DOI: 10.1088/1742-6596/224/1/012133.

  • Chen, Y. G., Gu, X., Shen, Y. H., & Xing, S. Z. (2006). Optimization of active power filter system pi parameters based on improved ant colony algorithm, mechatronics and automation. In Proceedings of the 2006 International Conference on Mechatronics and Automation, June 25-28, 2006 (pp. 2189-2193). Henan, Luoyang, China: IEEE. DOI: 10.1109/icma.2006.257633.

  • Damez, J. L., Clerjon, S., Abouelkaram, S., & Lepetit, J. (2007). Dielectric behavior of beef meat in the 1-1500 kHz range: Simulation with the Fricke/Cole-Cole model. Meat Science, 77, 512-519. DOI: 10.1016/j.meatsci.2007.04.028.

  • Daniels, J. S., & Pourmand, N. (2007). Label-free impedance biosensors: Opportunities and challenges. Electroanalysis, 19, 1239-1257. DOI: 10.1002/elan.200603855.

  • Das, S., Sivaramakrishna, M., Biswas, K., & Goswami, B. (2011). Performance study of a “constant phase angle based” impedance sensor to detect milk adulteration. Sensors and Actuators A: Physical, 167, 273-278. DOI: 10.1016/j.sna. 2011.02.041.

  • Debnath, L. (2012). Nonlinear partial differential equations for scientists and engineers (pp. 675-687). New York, NY, USA: Springer. DOI: 10.1007/978-0-8176-8265-1.

  • Euring, F., Russ, W., Wilke, W., & Grupa, U. (2011). Development of an impedance measurement system for the detection of decay of apples. Procedia Food Science, 1, 1188-1194. DOI: 10.1016/j.profoo.2011.09.177.

  • Fernandez-Segovia, I., Fuentes, A., Ali˜no, M., Masot, R., Alca˜niz, M., & Barat, J. M. (2012). Detection of frozenthawed salmon (Salmo salar) by a rapid low-cost method. Journal of Food Engineering, 113, 210-216. DOI: 10.1016/j. jfoodeng.2012.06.003.

  • Franco, A. P., Tadini, C. C., & Gut, J. A. W. (2013). Dielectric properties of simulated green coconut water from 500 to 3,000 MHz at temperatures from 10 to 80 C°. In Proceedengs of the 2013 AIChE Annual Meeting Global Challenges for Engineering a Sustainable Future, November 3-8, 2013. San Francisco, CA, USA: AIChE.

  • Guo, W. C., Zhu, X. H., Liu, H., Yue, R., & Wang, S. J. (2010). Effects of milk concentration and freshness on microwave dielectric properties. Journal of Food Engineering, 99, 344-350. DOI: 10.1016/j.jfoodeng.2010.03.015.

  • Guo, W. C., Liu, Y., Zhu, X. H., & Wang, S. J. (2011a). Temperature-dependent dielectric properties of honey associated with dielectric heating. Journal of Food Engineering, 102, 209-216. DOI: 10.1016/j.jfoodeng.2010.08.016.

  • Guo, W. C., Zhu, X. H., Nelson, S. O., Yue, R., Liu, H., & Liu, Y. (2011b). Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT - Food Science and Technology, 44, 224-230. DOI: 10.1016/j.lwt.2010.05.032.

  • Halambre, S. N., & Badhe, S. G. (2013). Characterization of milk using impedance analysis technique. Deccean Current Science International Research Journal, 8, 132-136.

  • Jacquelin, J. (1991). A number of models for CPA impedances of conductors and for relaxation in non-Debye dielectrics. Journal of Non-Crystalline Solids, 131-133, 1080-1083. DOI: 10.1016/0022-3093(91)90728-o.

  • Jacquelin, J. (1994). Theoretical impedance of rough electrodes with smooth shapes of roughness. Electrochimica Acta, 39, 2673-2684. DOI: 10.1016/0013-4686(94)00296-7.

  • Jean, J. (1997). The phasance concept: A review. Current Topics in Electrochemistry, 4, 127-136.

  • Jennings, A. L., Ordonez, R., & Ceccarelli, N. (2008). An Ant Colony Optimization using training data applied to UAV way point path planning in wind. In Proceedings of the IEEE Swarm Intelligence Symposium, September 21-23, 2008. St. Louis, Missouri, USA: IEEE Computational Intelligence Society. DOI: 10.1109/sis.2008.4668302.

  • Kagan, R. L., Schuette, W. H., Zierdt, C. H., & MacLowry, J. D. (1977). Rapid automated diagnosis of bacteremia by impedance detection. Journal of Clinical Microbiology, 5, 51-57.

  • Karaskova, P., Fuentes, A., Fernandez-Segovia, I., Alca˜niz, M., Masot, R., & Barat, J. M. (2011). Development of a lowcost non-destructive system for measuring moisture and salt content in smoked fish products. Procedia Food Science, 1, 1195-1201. DOI: 10.1016/j.profoo.2011.09.178.

  • Katiyar, V. (2013). Food adulteration: The demonic onslaught on health. Saarbr¨ucken, Germany: Lambert Academic Publishing.

  • Kobayashi, A., Mizutani, K., Wakasuki, N., & Maeda, Y. (2013). Changes of electrical impedance characteristic of pork in heating process. International Proceedings of Chemical, Biological & Environmental Engineering, 50, 74-78. DOI: 10.7763/ipcbee.2013.v50.16.

  • Kuson, P., & Terdwongworakul, A. (2013). Minimally-destructive evaluation of durian maturity based on electrical impedance measurement. Journal of Food Engineering, 116, 50-56. DOI: 10.1016/j.jfoodeng.2012.11.021.

  • Li, X. B. (2003). Impedance spectroscopy for manufacturing control material physical properties. Ph.D. thesis, Seattle, WA, USA: University of Washington.

  • Li, X., Toyoda, K., & Ihara, I. (2011). Coagulation process of soymilk characterized by electrical impedance spectroscopy. Journal of Food Engineering, 105, 563-568. DOI: 10.1016/j.jfoodeng.2011.03.023.

  • Macdonald, J. R. (1992). Impedance spectroscopy. Annuals of Biomedical Engineering, 20, 289-305. DOI: 10.1007/bf02368 532.

  • Mahapatra, A. K., Jones, B. L., Nguyen, C. N., & Kannan, G. (2010). Experimental determination of the electrical resistivity of beef. Agricultural Engineering International: CIGR Journal, 12, 124-128.

  • Maireva, S., Usai, T., & Manhokwe, S. (2013). The determination of adulteration in orange based fruit juices. International Journal of Science and Technology, 2, 365-372.

  • McAdams, E. (2006). Bioelectrodes. In J. G. Webster (Ed.), Encyclopedia of medical devices and instrumentation. New York, NY, USA: Wiley. DOI: 10.1002/0471732877.emd013.

  • Mizukami, Y., Yamada, K., Sawai, Y., & Yamaguchi, Y. (2007). Measurement of fresh tea growth using electrical impedance spectroscopy. Agricultural Journal, 2, 134-139.

  • Nagy, S., Attaway, J. A., Rhodes, M. E. (1988). Adulteration of fruit juice beverages. New York, NY, USA: CRC Press.

  • Nandakumar, V., La Belle, J. T., Reed, J., Shah, M., Cochran, D., Joshi, L., & Alford, T. L. (2008). A methodology for rapid detection of Salmonella typhimurium using label-free electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 24, 1039-1042. DOI: 10.1016/j.bios.2008.06.036.

  • Niu, J., & Lee, J. Y. (2000). A new approach for the determination of fish freshness by electrochemical impedance spectroscopy. Journal of Food Science, 65, 780-785. DOI: 10.1111/j.1365-2621.2000.tb13586.x.

  • Perez-Esteve, E., Fuentes, A., Grau, R., Fernandez-Segovia, I., Masot, R., Alca˜niz, M., & Barat, J. M. (2014). Use of impedance spectroscopy for predicting freshness of sea bream (Sparus aurata). Food Control, 35, 360-365. DOI: 10.1016/j.foodcont.2013.07.025.

  • Ragni, L., Al-Shami, A., Berardinelli, A., Mikhaylenko, G., & Tang, J. (2007). Quality evaluation of shell eggs during stor age using a dielectric technique. Transactions of the ASABE, 50, 1331-1340. DOI: 10.13031/2013.23610.

  • Rahman, M. S. A., Mukhopadhyay, S. C., Yu, P. L., Goicoechea, J., Matias, I. R., Gooneratne, C. P., & Kosel, J. (2013). Detection of bacterial endotoxin in food: New planar interdigital sensors based approach. Journal of Food Engineering, 114, 346-360. DOI: 10.1016/j.jfoodeng.2012.08.026.

  • Rizo, A., Fuentes, A., Fernandez-Segovia, I., Masot, R., Alca˜niz, M., & Barat, J. M. (2013). Development of a new salmon salting-smoking method and process monitoring by impedance spectroscopy. LWT - Food Science and Technology, 51, 218-224. DOI: 10.1016/j.lwt.2012.09.025.

  • Salamon, M., & Svitok, P. (1959). A low frequency electrodeless conductometer for measuring the electrical conductivity of solutions. Abingdon, UK: Atomic Energy Authority.

  • Scandurra, G., Tripodi, G., & Verzera, A. (2013). Impedance spectroscopy for rapid determination of honey floral origin. Journal of Food Engineering, 119, 738-743. DOI: 10.1016/j.jfoodeng.2013.06.042.

  • Seidlova, R., Poživil, J., & Hanta, V. (2012). Classification rule extracting with ant colony algorithms. In Proceedings of the 39th International Conference of Slovak Society of Chemical Engineering, May 25-29, 2012 (pp. 664-671). Bratislava, Slovakia: Slovak Society of Chemical Engineering.

  • Seidlova, R., Seidl, J., Poživil, J., & Hanta, V. (2013). Application of ant colony algorithm to model electrical impedance spectra of orange juices. In Proceedings of the 40th International Conference of Slovak Society of Chemical Engineering, May 27-31, 2013 (pp. 903-910). Bratislava, Slovakia: Slovak Society of Chemical Engineering.

  • Skierucha, W., Wilczek, A., & Szypłowska, A. (2012). Dielectric spectroscopy in agrophysics. International Agrophysics, 26, 187-197. DOI: 10.2478/v10247-012-0027-5.

  • Soltani, M., Alimardani, R., & Omid, M. (2011). Evaluating banana ripening status from measuring dielectric properties. Journal of Food Engineering, 105, 625-631. DOI: 10.1016/j.jfoodeng.2011.03.032.

  • Srinivasan, B., Tung, S., Li, Y. B., & Varshney, M. (2006). Simulation of electrical impedance based microfluidic biosensor for detection of E. coli cells. In Proceedings of the COMSOL Users Conference 2006, October 22-24, 2006. Boston, MA, USA: COMSOL.

  • Vidaček, S., Medi´c, H., Botka-Petrak, K., Nežak, J., & Petrak, T. (2008). Bioelectrical impedance analysis of frozen sea bass (Dicentrarchus labrax). Journal of Food Engineering, 88, 263-271. DOI: 10.1016/j.jfoodeng.2008.02.010.

  • Wang, L., & Wu, Q. D. (2001). Ant system algorithm for optimization in continuous space. In Proceedings of the 2001 IEEE International Conference on Control Applications, September 7-7, 2011. Mexico City, Mexico: IEEE. DOI: 10.1109/cca.2001.973897.

  • Wu, J., Ben, Y. X., & Chang, H. C. (2005). Particle detection by electrical impedance spectroscopy with asymmetricpolarization AC electroosmotic trapping. Microfluidics and Nanofluidics, 1, 161-167. DOI: 10.1007/s10404-004-0024-5.

  • Wu, L., Ogawa, Y., & Tagawa, A. (2008). Electrical impedance spectroscopy analysis of eggplant pulp and effects of drying and freezing-thawing treatments on its impedance characteristics. Journal of Food Engineering, 87, 274-280. DOI: 10.1016/j.jfoodeng.2007.12.003.

  • Yang, L., & Bashir, R. (2008). Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances, 26, 135-150. DOI: 10.1016/j. biotechadv.2007.10.003.

  • Yang, B., Meng, F., & Dong, Y. G. (2013). A coil-coupled sensor for electrolyte solution conductivity measurement. In Proceedings of the 2013 2nd International Conference on Measurement, Information and Control, August 16-18, 2013. Harbin, Heilongjiang, China: IEEE. DOI: 10.1109/mic.2013. 6757915.

  • Zhang, H. (1995). Electrical properties of foods. Food Engineering, 1, 152.

  • Zheng, S. (2010). An investigation on electrical properties of major constituents of grape must under fermentation using of electrical impedance spectroscopy. Ph.D. thesis. Melbourne, Australia: RMIT University.

  • Zhu, X. H., Guo,W. C.,Wu, X. L., &Wang, S. J. (2012). Dielectric properties of chestnut flour relevant to drying with radiofrequency and microwave energy. Journal of Food Engineering, 113, 143-150. DOI: 10.1016/j.jfoodeng.2012.04.014.

  • Zia, A. I., Syaifudin, A. R. M., Mukhopadhyay, S. C., Yu, P. L., Al-Bahadly, I. H., Gooneratne, C. P., Kosel, J., & Liao, T. S. (2013). Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices. Journal of Physics: Conference Series, 439, 012026. DOI: 10.1088/1742-6596/439/1/012026.

  • Zsivanovits, G., Brashlyanova, B., & Karabadzhov, O. (2012). Dielectric impedance monitoring of heat pump drying of apple slices. Journal of Food Physics, 24-25, 50-58.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues