A Weakly Penalized Discontinuous Galerkin Method for Radiation in Dense, Scattering Media

Guido Kanschat 1  and José Pablo Lucero Lorca 2
  • 1 IWR, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
  • 2 IWR, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
Guido Kanschat and José Pablo Lucero Lorca


We review the derivation of weakly penalized discontinuous Galerkin methods for scattering dominated radiation transport and extend the asymptotic analysis to non-isotropic scattering. We focus on the influence of the penalty parameter on the edges and derive a new penalty for interior edges and boundary fluxes. We study how the choice of the penalty parameters influences discretization accuracy and solver speed.

  • [1]

    Adams M. L., Discontinuous finite element transport solutions in thick diffusive problems, Nuclear Sci. Eng. 137 (2001), no. 3, 298–333.

  • [2]

    Asadzadeh M., Analysis of a fully discrete scheme for neutron transport in two-dimensional geometry, SIAM J. Numer. Anal. 23 (1986), 543–561.

  • [3]

    Asadzadeh M., Kumlin P. and Larsson S., The discrete ordinates method for the neutron transport equation in an infinite cylindrical domain, Math. Models Methods Appl. Sci. 2 (1992), no. 3, 317–338.

  • [4]

    Ayuso B. and Marini L. D., Discontinuous Galerkin methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1391–1420.

  • [5]

    Bangerth W., Heister T., Heltai L., Kanschat G., Kronbichler M., Maier M. and Turcksin B., The deal.II library, version 8.3., Arch. Numer. Softw. 4 (2016), no. 100, 1–11.

  • [6]

    Bangerth W., Heister T. and Kanschat G., deal.II Differential Equations Analysis Library, Technical Reference, 8.0 edition, 2013.

  • [7]

    Bramble J. H., Multigrid Methods, Pitman Res. Notes Math. Ser. 294, Longman Scientific, Harlow, 1993.

  • [8]

    Case K. M. and Zweifel P. F., Linear Transport Theory, Addison-Wesley, Reading, 1967.

  • [9]

    Castillo P., Cockburn B., Perugia I. and Schötzau D., An a priori error estimate of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706.

  • [10]

    Chandrasekhar S., Radiative Transfer, Oxford University Press, Oxford, 1950.

  • [11]

    Dautray R. and Lions J.-L., Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 6: Evolution Problems II, Springer, Berlin, 2000.

  • [12]

    Grella K., Sparse tensor phase space Galerkin approximation for radiative transport, SpringerPlus 3 (2014), no. 1, 3–230.

  • [13]

    Grella K. and Schwab C., Sparse tensor spherical harmonics approximation in radiative transfer, J. Comput. Phys. 230 (2011), no. 23, 8452–8473.

  • [14]

    Guermond J.-L. and Kanschat G., Asymptotic analysis of upwind DG approximation of the radiative transport equation in the diffusive limit, SIAM J. Numer. Anal. 48 (2010), no. 1, 53–78.

  • [15]

    Hackbusch W., Multi-Grid Methods and Applications, Springer, Berlin, 1985.

  • [16]

    Hackbusch W. and Probst T., Downwind Gauss-Seidel smoothing for convection dominated problems, Numer. Linear Algebra Appl. 4 (1997), no. 2, 85–102.

  • [17]

    Johnson C. and Pitkäranta J., Convergence of a fully discrete scheme for two-dimensional neutron transport, SIAM J. Numer. Anal. 20 (1983), 951–966.

  • [18]

    Johnson C. and Pitkäranta J., An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46 (1986), 1–26.

  • [19]

    Kanschat G., Preconditioning methods for local discontinuous Galerkin discretizations, SIAM J. Sci. Comput. 25 (2003), no. 3, 815–831.

  • [20]

    Kanschat G., Block preconditioners for LDG discretizations of linear incompressible flow problems, J. Sci. Comput. 22 (2005), no. 1, 381–394.

  • [21]

    Kanschat G., Discontinuous Galerkin Methods for Viscous Flow, Deutscher Universitätsverlag, Wiesbaden, 2007.

  • [22]

    Kanschat G. and Ragusa J., A robust multigrid preconditioner for S N ${S_{N}}$DG approximation of monochromatic, isotropic radiation transport problems, SIAM J. Sci. Comput. 36 (2014), no. 5, 2326–2345.

  • [23]

    Larsen E. W., The asymptotic diffusion limit of discretized transport problems, Nuclear Sci. Eng. 112 (1992), 336–346.

  • [24]

    Larsen E. W. and Morel J. E., Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. II, J. Comput. Phys. 83 (1989), no. 1, 212–236.

  • [25]

    Larsen E. W., Morel J. E. and Miller, Jr. W. F., Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes, J. Comput. Phys. 69 (1987), no. 2, 283–324.

  • [26]

    LeSaint P. and Raviart P.-A., On a finite element method for solving the neutron transport equation, Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York (1974), 89–123.

  • [27]

    Mihalas D. and Weibel-Mihalas B., Foundations of Radiation Hydrodynamics, Dover, New York, 1984.

  • [28]

    Oxenius J., Kinetic Theory of Particles and Photons, Springer, Berlin, 1986.

  • [29]

    Pietro D. A. D., Ern A. and Guermond J.-L., Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection, SIAM J. Numer. Anal. 46 (2008), no. 2, 805–831.

  • [30]

    Pitkäranta J., A non-self-adjoint variational procedure for the finite-element approximation of the transport equation, Transp. Theory Stat. Phys. 4 (1975), no. 1, 1–24.

  • [31]

    Pitkäranta J., On the variational approximation of the transport operator, J. Math. Anal. Appl. 54 (1976), no. 2, 419–440.

  • [32]

    Pitkäranta J., Approximate solution of the transport equation by methods of Galerkin type, J. Math. Anal. Appl. 60 (1977), no. 1, 186–210.

  • [33]

    Pitkäranta J. and Scott R. L., Error estimates for the combined spatial and angular approximations of the transport equation for slab geometry, SIAM J. Numer. Anal. 20 (1983), no. 5, 922–950.

  • [34]

    Ragusa J., Guermond J.-L. and Kanschat G., A robust S n ${S_{n}}$-DG-approximation for radiation transport in optically thick and diffusive regimes, J. Comput. Phys. 231 (2012), no. 4, 1947–1962.

  • [35]

    Reed W. and Hill T., Triangular mesh methods for the neutron transport equation, Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973.

  • [36]

    Sanchez R. and Ragusa J., On the construction of Galerkin angular quadratures, Nuclear Sci. Eng. 169 (2011), 133–154.

  • [37]

    Toselli A. and Widlund O., Domain decomposition methods. Algorithms and theory, Springer Ser. Comput. Math. 34, Springer, Berlin, 2005.

  • [38]

    Widmer G., Hiptmair R. and Schwab C., Sparse adaptive finite elements for radiative transfer, J. Comput. Phys. 227 (2008), no. 12, 6071–6105.

  • [39]

    Xu J., Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581–613.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues

CMAM considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. The journal is interdisciplinary while retaining the common thread of numerical analysis, readily readable and meant for a wide circle of researchers in applied mathematics.