Edge Patch-Wise Local Projection Stabilized Nonconforming FEM for the Oseen Problem

Rahul Biswas 1 , Asha K. Dond 1 ,  and Thirupathi Gudi 2
  • 1 Department of Mathematics, Indian Institute of Science, 560012, Bangalore, India
  • 2 Department of Mathematics, Indian Institute of Science, 560012, Bangalore, India
Rahul Biswas, Asha K. Dond and Thirupathi Gudi

Abstract

In finite element approximation of the Oseen problem, one needs to handle two major difficulties, namely, the lack of stability due to convection dominance and the incompatibility between the approximating finite element spaces for the velocity and the pressure. These difficulties are addressed in this article by using an edge patch-wise local projection (EPLP) stabilization technique. The article analyses the EPLP stabilized nonconforming finite element methods for the Oseen problem. For approximating the velocity, the lowest-order Crouzeix–Raviart (CR) nonconforming finite element space is considered; whereas for approximating the pressure, two discrete spaces are considered, namely, the piecewise constant polynomial space and the lowest-order CR finite element space. The proposed discrete weak formulation is a combination of the standard Galerkin method, EPLP stabilization and weakly imposed boundary condition by using Nitsche’s technique. The resulting bilinear form satisfies an inf-sup condition with respect to EPLP norm, which leads to the well-posedness of the discrete problem. A priori error analysis assures the optimal order of convergence in both the cases, that is, order one in the case of piecewise constant approximation and 32 in the case of CR-finite element approximation for pressure. The numerical experiments illustrate the theoretical findings.

  • [1]

    D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779.

  • [2]

    R. E. Bank and H. Yserentant, On the H 1 H^{1}-stability of the L 2 L_{2}-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381.

    • Crossref
    • Export Citation
  • [3]

    R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo 38 (2001), no. 4, 173–199.

    • Crossref
    • Export Citation
  • [4]

    M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6, 2544–2566.

    • Crossref
    • Export Citation
  • [5]

    M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4–6, 853–866.

    • Crossref
    • Export Citation
  • [6]

    J. H. Bramble, J. E. Pasciak and O. Steinbach, On the stability of the L 2 L^{2} projection in H 1 ( Ω ) H^{1}(\Omega), Math. Comp. 71 (2002), no. 237, 147–156.

  • [7]

    S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008.

  • [8]

    E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. 43 (2005), no. 5, 2012–2033.

    • Crossref
    • Export Citation
  • [9]

    E. Burman, M. A. Fernández and P. Hansbo, Continuous interior penalty finite element method for Oseen’s equations, SIAM J. Numer. Anal. 44 (2006), no. 3, 1248–1274.

    • Crossref
    • Export Citation
  • [10]

    E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy–Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986–997.

    • Crossref
    • Export Citation
  • [11]

    E. Burman and P. Hansbo, A stabilized non-conforming finite element method for incompressible flow, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 23–24, 2881–2899.

    • Crossref
    • Export Citation
  • [12]

    C. Carstensen, Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion for H 1 H^{1}-stability of the L 2 L^{2}-projection onto finite element spaces, Math. Comp. 71 (2002), no. 237, 157–163.

  • [13]

    B. Cockburn, G. Kanschat and D. Schötzau, The local discontinuous Galerkin method for the Oseen equations, Math. Comp. 73 (2004), no. 246, 569–593.

  • [14]

    B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations, J. Sci. Comput. 31 (2007), no. 1–2, 61–73.

    • Crossref
    • Export Citation
  • [15]

    B. Cockburn, G. Kanschat and D. Schötzau, An equal-order DG method for the incompressible Navier–Stokes equations, J. Sci. Comput. 40 (2009), no. 1–3, 188–210.

    • Crossref
    • Export Citation
  • [16]

    M. Crouzeix and V. Thomée, The stability in L p L_{p} and W p 1 W^{1}_{p} of the L 2 L_{2}-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532.

  • [17]

    H. Dallmann, D. Arndt and G. Lube, Local projection stabilization for the Oseen problem, IMA J. Numer. Anal. 36 (2016), no. 2, 796–823.

    • Crossref
    • Export Citation
  • [18]

    D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012.

  • [19]

    A. K. Dond and T. Gudi, Patch-wise local projection stabilized finite element methods for convection-diffusion-reaction problem, preprint.

  • [20]

    A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004.

  • [21]

    L. P. Franca, V. John, G. Matthies and L. Tobiska, An inf-sup stable and residual-free bubble element for the Oseen equations, SIAM J. Numer. Anal. 45 (2007), no. 6, 2392–2407.

    • Crossref
    • Export Citation
  • [22]

    S. Ganesan, G. Matthies and L. Tobiska, Local projection stabilization of equal order interpolation applied to the Stokes problem, Math. Comp. 77 (2008), no. 264, 2039–2060.

    • Crossref
    • Export Citation
  • [23]

    V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986.

  • [24]

    V. John, Finite Element Methods for Incompressible Flow Problems, Springer Ser. Comput. Math. 51, Springer, Cham, 2016.

  • [25]

    C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987.

  • [26]

    P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations, SIAM J. Numer. Anal. 48 (2010), no. 2, 659–680.

    • Crossref
    • Export Citation
  • [27]

    P. Knobloch and L. Tobiska, Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem, Numer. Methods Partial Differential Equations 29 (2013), no. 1, 206–225.

    • Crossref
    • Export Citation
  • [28]

    G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem, M2AN Math. Model. Numer. Anal. 41 (2007), no. 4, 713–742.

    • Crossref
    • Export Citation
  • [29]

    G. Matthies and L. Tobiska, Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem, IMA J. Numer. Anal. 35 (2015), no. 1, 239–269.

    • Crossref
    • Export Citation
  • [30]

    J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg. 36 (1971), 9–15.

    • Crossref
    • Export Citation
  • [31]

    H.-G. Roos, Robust numerical methods for singularly perturbed differential equations: A survey covering 2008–2012, ISRN Appl. Math. 2012 (2012), Article ID 379547.

  • [32]

    H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 2008.

  • [33]

    L. Tobiska, Finite element methods of streamline diffusion type for the Navier–Stokes equations, Numerical Methods (Miskolc 1990), Colloq. Math. Soc. János Bolyai 59, North-Holland, Amsterdam (1991), 259–266.

  • [34]

    L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 107–127.

    • Crossref
    • Export Citation
  • [35]

    S. Turek and A. Ouazzi, Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations, J. Numer. Math. 15 (2007), no. 4, 299–322.

  • [36]

    J. Volker, Finite Element Methods for Incompressible Flow Problems, Springer Ser. Comput. Math. 51, Springer, Cham, 2016.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

CMAM considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. The journal is interdisciplinary while retaining the common thread of numerical analysis, readily readable and meant for a wide circle of researchers in applied mathematics.

Search