Perturbation of the lipid phase of a membrane is not involved in the modulation of MRP1 transport activity by flavonoids

Olga Wesołowska 1 , Andrzej Hendrich 1 , Barbara Łania-Pietrzak 1 , Jerzy Wiśniewski 1 , Joseph Molnar 2 , Imre Ocsovszki 3 ,  and Krystyna Michalak 1
  • 1 Department of Biophysics, Wrocław Medical University, ul. Chałubińskiego 10, 50-368, Wrocław, Poland
  • 2 Institute of Medical Microbiology, University of Szeged, Dom ter 10, H-6720, Szeged, Hungary
  • 3 Department of Biochemistry, University of Szeged, Dom ter 9, H-6720, Szeged, Hungary

Abstract

The expression of transmembrane transporter multidrug resistance-associated protein 1 (MRP1) confers the multidrug-resistant phenotype (MDR) on cancer cells. Since the activity of the other MDR transporter, P-glycoprotein, is sensitive to membrane perturbation, we aimed to check whether the changes in lipid bilayer properties induced by flavones (apigenin, acacetin) and flavonols (morin, myricetin) were related to their MRP1 inhibitory activity. All the flavonoids inhibited the efflux of MRP1 fluorescent substrate from human erythrocytes and breast cancer cells. Morin was also found to stimulate the ATPase activity of erythrocyte ghosts. All flavonoids intercalated into phosphatidylcholine bilayers as judged by differential scanning calorimetry and fluorescence spectroscopy with the use of two carbocyanine dyes. The model of an intramembrane localization for flavones and flavonols was proposed. No clear relationship was found between the membrane-perturbing activity of flavonoids and their potency to inhibit MRP1. We concluded that mechanisms other than perturbation of the lipid phase of membranes were responsible for inhibition of MRP1 by the flavonoids.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hipfner, D.R., Deeley, R.G. and Cole, S.P. Structural, mechanistic and clinical aspects of MRP1. Biochim. Biophys. Acta 1461 (1999) 359–376. http://dx.doi.org/10.1016/S0005-2736(99)00168-6

  • [2] Keppler, D., Leier, I. and Jedlitschky, G. Transport of glutathione conjugates and glucuronides by the multidrug resistance proteins MRP1 and MRP2. Biol. Chem. 378 (1997) 787–791.

  • [3] Kamp, D. and Haest, C.W. Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochim. Biophys. Acta 1372 (1998) 91–101. http://dx.doi.org/10.1016/S0005-2736(98)00049-2

  • [4] Dekkers, D.W., Comfurius, P., van Gool, R.G., Bevers, E.M. and Zwaal, R.F. Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochem. J. 350 (2000) 531–535. http://dx.doi.org/10.1042/0264-6021:3500531

  • [5] Raggers, R.J., van Helvoort, A., Evers, R. and van Meer, G.R.J. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J. Cell. Sci. 112 (1999) 415–422.

  • [6] Harborne, J.B. and Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 55 (2000) 481–504. http://dx.doi.org/10.1016/S0031-9422(00)00235-1

  • [7] Dixon, R.A. and Ferreira, D. Genistein. Phytochemistry 60 (2000) 205–211. http://dx.doi.org/10.1016/S0031-9422(02)00116-4

  • [8] Heim, K.E., Tagliaferro, A.R. and Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 13 (2002) 572–584. http://dx.doi.org/10.1016/S0955-2863(02)00208-5

  • [9] Leslie, E.M., Mao, Q., Oleschuk, C.J., Deeley, R.G. and Cole, S.P. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol. Pharmacol. 59 (2001) 1171–1180.

  • [10] Nguyen, H., Zhang, S. and Morris, M.E. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J. Pharm. Sci. 92 (2003) 250–257. http://dx.doi.org/10.1002/jps.10283

  • [11] Bobrowska-Hagerstrand, M., Wrobel, A., Mrowczynska, L., Soderstrom, T., Shirataki, Y., Motohashi, N., Molnar, J., Michalak, K. and Hagerstrand, H. Flavonoids as inhibitors of MRP1-like efflux activity in human erythrocytes. A structure-activity relationship study. Oncol. Res. 13 (2003) 463–469.

  • [12] Lania-Pietrzak, B., Michalak, K., Hendrich, A.B., Mosiadz, D., Grynkiewicz, G., Motohashi, N. and Shirataki, Y. Modulation of MRP1 protein transport by plant, and synthetically modified flavonoids. Life Sci. 77 (2005) 1879–1891. http://dx.doi.org/10.1016/j.lfs.2005.04.005

  • [13] Critchfield, J.W., Welsh, C.J., Phang, J.M. and Yeh, G.C. Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem. Pharmacol. 48 (1994 1437–1445. http://dx.doi.org/10.1016/0006-2952(94)90568-1

  • [14] Zhang, S. and Morris, M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 304 (2003) 1258–1267. http://dx.doi.org/10.1124/jpet.102.044412

  • [15] Imai, Y., Tsukahara, S., Asada, S. and Sugimoto, Y. Phytoestrogens/flavonoids reverse breast cancer resistance protein/ABCG2-mediated multidrug resistance. Cancer Res. 64 (2004) 4346–4352. http://dx.doi.org/10.1158/0008-5472.CAN-04-0078

  • [16] Ferte, J. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur. J. Biochem. 267 (2000) 277–294. http://dx.doi.org/10.1046/j.1432-1327.2000.01046.x

  • [17] Hendrich, A.B. and Michalak, K. Lipids as a target for drugs modulating multidrug resistance of cancer cells. Curr. Drug Targets 4 (2003) 23–30. http://dx.doi.org/10.2174/1389450033347172

  • [18] Zordan-Nudo, T., Ling, V., Liu, Z. and Georges, E. Effects of nonionic detergents on P-glycoprotein drug binding and reversal of multidrug resistance. Cancer Res. 53 (1993) 5994–6000.

  • [19] Ford, J.M. and Hait, W.N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42 (1990) 155–199.

  • [20] Wadkins, R.M. and Houghton, P.J. The role of drug-lipid interactions in the biological activity of modulators of multi-drug resistance. Biochim. Biophys. Acta 1153 (1993) 225–236. http://dx.doi.org/10.1016/0005-2736(93)90409-S

  • [21] Drori, S., Eytan, G.D. and Assaraf, Y.G. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur. J. Biochem. 228 (1995) 1020–1029. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20352.x

  • [22] Pajeva, I.K., Wiese, M., Cordes, H.P. and Seydel, J.K. Membrane interactions of some catamphiphilic drugs and relation to their multidrug-resistance-reversing ability. J. Cancer Res. Clin. Oncol. 122 (1996) 27–40. http://dx.doi.org/10.1007/BF01203070

  • [23] Hendrich, A.B., Wesolowska, O., Motohashi, N., Molnar, J. and Michalak, K. New phenothiazine-type multidrug resistance modifiers: anti-MDR activity versus membrane perturbing potency. Biochem. Biophys. Res. Commun. 304 (2003) 260–265. http://dx.doi.org/10.1016/S0006-291X(03)00580-1

  • [24] Bobrowska-Hagerstrand, M., Wrobel, A., Mrowczynska, L., Soderstrom, T. and Hagerstrand, H. Modulation of MRP1-like efflux activity in human erythrocytes caused by membrane perturbing agents. Mol. Membr. Biol. 20 (2003) 255–259. http://dx.doi.org/10.1080/0968768031000106320

  • [25] Alqawi, O. and Georges, E. The multidrug resistance protein ABCC1 drug-binding domains show selective sensitivity to mild detergents. Biochem. Biophys. Res. Commun. 303 (2003) 1135–1141. http://dx.doi.org/10.1016/S0006-291X(03)00492-3

  • [26] Marbeuf-Gueye, C., Stierle, V., Sudwan, P., Salerno, M. and Garnier-Suillerot, A. Perturbation of membrane microdomains in GLC4 multidrug-resistant lung cancer cells-modification of ABCC1 (MRP1) localization and functionality. FEBS J. 274 (2007) 1470–1480. http://dx.doi.org/10.1111/j.1742-4658.2007.05688.x

  • [27] Klappe, K., Hinrichs, J.W., Kroesen, B.J., Sietsma, H. and Kok, J.W. MRP1 and glucosylceramide are coordinately over expressed and enriched in rafts during multidrug resistance acquisition in colon cancer cells. Int. J. Cancer 110 (2004) 511–522. http://dx.doi.org/10.1002/ijc.20140

  • [28] Hendrich, A.B. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 27 (2006) 27–40. http://dx.doi.org/10.1111/j.1745-7254.2006.00238.x

  • [29] Trompier, D., Baubichon-Cortay, H., Chang, X.B., Maitrejean, M., Barron, D., Riordon, J.R. and Di Pietro, A. Multiple flavonoid-binding sites within multidrug resistance protein MRP1. Cell. Mol. Life Sci. 60 (2003) 1–14. http://dx.doi.org/10.1007/s000180300000

  • [30] Wu, C.P., Calcagno, A.M., Hladky, S.B., Ambudkar, S.V. and Barrand, M.A. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5). FEBS J. 272 (2005) 4725–4740. http://dx.doi.org/10.1111/j.1742-4658.2005.04888.x

  • [31] Steck, T.L. and Kant, J.A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 31 (1973) 172–180. http://dx.doi.org/10.1016/0076-6879(74)31019-1

  • [32] Lowry, O.H., Roserbrough, N.J., Farr, A.L. and Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193 (1951) 265–275.

  • [33] Rychlik, B., Balcerczyk, A., Klimczak, A. and Bartosz, G. The role of multidrug resistance protein 1 (MRP1) in transport of fluorescent anions across the human erythrocyte membrane. J. Membr. Biol. 193 (2003) 79–90. http://dx.doi.org/10.1007/s00232-002-2009-1

  • [34] Van Veldhoven, P.P. and Mannaerts, G.P. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 161 (1987) 45–48. http://dx.doi.org/10.1016/0003-2697(87)90649-X

  • [35] Ferreira, M.J., Gyemant, N., Madureira, A.M., Tanaka, M., Koos, K., Didziapetris, R. and Molnar, J. The effects of jatrophane derivatives on the reversion of MDR1-and MRP-mediated multidrug resistance in the MDAMB-231 (HTB-26) cell line. Anticancer Res. 25 (2005) 4173–4178.

  • [36] Matsumoto, Y., Takano, H., Kunishio, K., Nagao, S. and Fojo, T. Expression of drug resistance genes in VP-16 and mAMSA-selected human carcinoma cells. Jpn. J. Cancer Res. 92 (2001) 778–784.

  • [37] Pastan, I., Gottesman, M.M., Ueda, K., Lovelace, E., Rutherford, A.V. and Willingham, M.C. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. Proc. Natl. Acad. Sci. USA 85 (1988) 4486–4490. http://dx.doi.org/10.1073/pnas.85.12.4486

  • [38] Ghose, A.K., Pritchett, A. and Crippen, G.M. Atomic physicochemical parameters for three dimensional structure activity relationships III: modelling hydrophobic interactions. J. Comput. Chem. 9 (1988) 80–90. http://dx.doi.org/10.1002/jcc.540090111

  • [39] Pulaski, L., Jedlitschky, G., Leier, I., Buchholz, U. and Keppler, D. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur. J. Biochem. 241 (1996) 644–648. http://dx.doi.org/10.1111/j.1432-1033.1996.00644.x

  • [40] Klokouzas, A., Wu, C.P., van Veen, H.W., Barrand, M.A. and Hladky, S.B. cGMP and glutathione-conjugate transport in human erythrocytes. Eur. J. Biochem. 270 (2003) 3696–3708. http://dx.doi.org/10.1046/j.1432-1033.2003.03753.x

  • [41] Jedlitschky, G., Burchell, B. and Keppler, D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J. Biol. Chem. 275 (2000) 30069–30074. http://dx.doi.org/10.1074/jbc.M005463200

  • [42] Wesolowska, O., Mosiadz, D., Motohashi, N., Kawase, M. and Michalak, K. Phenothiazine maleates stimulate MRP1 transport activity in human erythrocytes. Biochim. Biophys. Acta 1720 (2005) 52–58. http://dx.doi.org/10.1016/j.bbamem.2005.11.011

  • [43] McAleer, M.A., Breen, M.A., White, N.L. and Matthews, N. pABC11 (also known as MOAT-C and MRP5), a member of the ABC family of proteins, has anion transporter activity but does not confer multidrug resistance when over-expressed in human embryonic kidney 293 cells. J. Biol. Chem. 274 (1999) 23541–23548. http://dx.doi.org/10.1074/jbc.274.33.23541

  • [44] Klokouzas, A., Barrand, M.A. and Hladky, S.B. Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cells. FEBS Lett. 268 (2001) 6569–6577.

  • [45] Rychlik, B., Pulaski, L., Sokal, A., Soszynski, M. and Bartosz, G. Transport of organic anions by multidrug resistance-associated protein in the erythrocyte. Acta Biochim. Pol. 47 (2000) 763–772.

  • [46] Bobrowska-Hagerstrand, M., Wrobel, A., Rychlik, B., Bartosz, G., Soderstrom, T., Shirataki, Y., Motohashi, N., Molnar, J., Michalak, K. and Hagerstrand, H. Monitoring of MRP-like activity in human erythrocytes: inhibitory effect of isoflavones. Blood Cells Mol. Dis. 27 (2001) 894–900. http://dx.doi.org/10.1006/bcmd.2001.0459

  • [47] van Zanden, J.J., Wortelboer, H.M., Bijlsma, S., Punt, A., Usta, M., Bladeren, P.J., Rietjens, I.M. and Cnubben, N.H. Quantitative structure activity relationship studies on the flavonoid mediated inhibition of multidrug resistance proteins 1 and 2. Biochem. Pharmacol. 69 (2005) 699–708. http://dx.doi.org/10.1016/j.bcp.2004.11.002

  • [48] van Zanden, J.J., de Mul, A., Wortelboer, H.M., Usta, M., van Bladeren, P.J., Rietjens, I.M. and Cnubben, N.H. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin. Biochem. Pharmacol. 69 (2005) 1657–1665. http://dx.doi.org/10.1016/j.bcp.2005.03.001

  • [49] Phang, J.M., Poore, C.M., Lopaczynska, J. and Yeh, G.C. Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug-resistant breast cancer cells. Cancer Res. 53 (1993) 5977–5981.

  • [50] Castro, A.F. and Altenberg, G.A. Inhibition of drug transport by genistein in multidrug-resistant cells expressing P-glycoprotein. Biochem. Pharmacol. 53 (1997) 89–93. http://dx.doi.org/10.1016/S0006-2952(96)00657-0

  • [51] Boumendjel, A., Di Pietro, A., Dumontet, C. and Barron, D. Recent advances in the discovery of flavonoids and analogs with high-affinity binding to P-glycoprotein responsible for cancer cell multidrug resistance. Med. Res. Rev. 22 (2002) 512–529. http://dx.doi.org/10.1002/med.10015

  • [52] Ikegawa, T., Ohtani, H., Koyabu, N., Juichi, M., Iwase, Y., Ito, C., Furukawa, H., Naito, M., Tsuruo, T. and Sawada, Y. Inhibition of P-glycoprotein by flavonoid derivatives in adriamycin-resistant human myelogenous leukemia (K562/ADM) cells. Cancer Lett. 177 (2002) 89–93. http://dx.doi.org/10.1016/S0304-3835(01)00761-3

  • [53] Conseil, G., Baubichon-Cortay, H., Dayan, G., Jault, J.M., Barron, D. and Di Pietro, A. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP-and steroid-binding sites on mouse P-glycoprotein. Proc. Natl. Acad. Sci. USA 95 (1998) 9831–9836. http://dx.doi.org/10.1073/pnas.95.17.9831

  • [54] Hooijberg, J.H., Pinedo, H.M., Vrasdonk, C., Priebe, W., Lankelma, J. and Broxterman, H.J. The effect of glutathione on the ATPase activity of MRP1 in its natural membranes. FEBS Lett. 469 (2000) 47–51. http://dx.doi.org/10.1016/S0014-5793(00)01238-2

  • [55] Di Pietro, A., Conseil, G., Perez-Victoria, J.M., Dayan, G., Baubichon-Cortay, H., Trompier, D., Steinfels, E., Jault, J.M., de Wet, H., Maitrejean, M., Comte, G., Boumendjel, A., Mariotte, A.M., Dumontet, C., McIntosh, D.B., Goffeau, A., Castanys, S., Gamarro, F. and Barron, D. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell. Mol. Life Sci. 59 (2002) 307–322. http://dx.doi.org/10.1007/s00018-002-8424-8

  • [56] Mao, Q., Leslie, E.M., Deeley, R.G. and Cole, S.P. ATPase activity of purified and reconstituted multidrug resistance protein MRP1 from drug-selected H69AR cells. Biochim. Biophys. Acta 1461 (1999) 69–82. http://dx.doi.org/10.1016/S0005-2736(99)00150-9

  • [57] Chang, X.B., Hou, Y.X. and Riordan, J.R. ATPase activity of purified multidrug resistance-associated protein. J. Biol. Chem. 272 (1997) 30962–30968. http://dx.doi.org/10.1074/jbc.272.49.30962

  • [58] Hooijberg, J.H., Broxterman, H.J., Heijn, M., Fles, D.L., Lankelma, J. and Pinedo, H.M. Modulation by (iso)flavonoids of the ATPase activity of the multidrug resistance protein. FEBS Lett. 413 (1997) 344–348. http://dx.doi.org/10.1016/S0014-5793(97)00940-X

  • [59] Hooijberg, J.H., Broxterman, H.J., Scheffer, G.L., Vrasdonk, C., Heijn, M., de Jong, M.C., Scheper, R.J., Lankelma, J. and Pinedo, H.M. Potent interaction of flavopiridol with MRP1. Br. J. Cancer 81 (1999) 269–276. http://dx.doi.org/10.1038/sj.bjc.6690687

  • [60] Jain, M.K. and Wu, N.M. Effect of small molecules on the dipalmitoyl lecithin liposomal bilayer: III. Phase transition in lipid bilayer. J. Membr. Biol. 34 (1977) 157–201. http://dx.doi.org/10.1007/BF01870299

  • [61] Saija, A., Bonina, F., Trombetta, D., Tomaino, A., Montenegro, L., Smeriglio, P. and Castelli, F. Flavonoid-biomembrane interactions: A calorimetric study on dipalmitoylphosphatidylcholine vesicles. Int. J. Pharmaceutics 124 (1995) 1–8. http://dx.doi.org/10.1016/0378-5173(95)00051-J

  • [62] Hendrich, A.B., Malon, R., Pola, A., Shirataki, Y., Motohashi, N. and Michalak, K. Differential interaction of Sophora isoflavonoids with lipid bilayers. Eur. J. Pharm. Sci. 16 (2002) 201–208. http://dx.doi.org/10.1016/S0928-0987(02)00106-9

  • [63] Ollila, F., Haing, K., Vuorela, P., Vuorela, H. and Slotte, J.P. Characterization of flavonoid-biomembrane interactions. Arch. Biochem. Biophys. 399 (2002) 103–108. http://dx.doi.org/10.1006/abbi.2001.2759

  • [64] Bhowmik, B.B., Basu, S. and Ray, D. Photophysical studies of 3,3′ dioctadecyloxacarbocyanine dye in model biological membranes and different solvents. Chem. Phys. Lipids 109 (2001) 175–183. http://dx.doi.org/10.1016/S0009-3084(00)00218-8

  • [65] Sidorowicz, A., Pola, A. and Dobryszycki, P. Spectral properties of 3,3′-diethyloxadicarbocyanine included in phospholipid liposomes. J. Photochem. Photobiol. B 38 (1997) 94–97. http://dx.doi.org/10.1016/S1011-1344(96)07431-3

  • [66] Sidorowicz, A., Mora, C., Jablonka, S., Pola, A., Modrzycka, T., Mosiadz, D. and Michalak, K. Spectral properties of two betaine-type cyanine dyes in surfactant micelles and in the presence of phospholipids. J. Mol. Struct. 744–747 (2005) 711–716. http://dx.doi.org/10.1016/j.molstruc.2004.12.053

  • [67] Krishna, M.M. and Periasamy, N. Location and orientation of DODCI in lipid bilayer membranes: effects of lipid chain length and unsaturation. Biochim. Biophys. Acta 1461 (1999) 58–68. http://dx.doi.org/10.1016/S0005-2736(99)00149-2

  • [68] Lopes, S. and Castanho, M.A. Does aliphatic chain length influence carbocyanines’ orientation in supported lipid multilayers? J. Fluorescence 14 (2004) 281–287. http://dx.doi.org/10.1023/B:JOFL.0000024560.17546.97

  • [69] Scheidt, H.A., Pampel, A., Nissler, L., Gebhardt, R. and Huster, D. Investigation of the membrane localization and distribution of flavonoids by high-resolution magic angle spinning NMR spectroscopy. Biochim. Biophys. Acta 1663 (2004) 97–107. http://dx.doi.org/10.1016/j.bbamem.2004.02.004

  • [70] Siarheyeva, A., Lopez, J.J. and Glaubitz, C. Localization of multidrug transporter substrates within model membranes. Biochemistry 45 (2006) 6203–6211. http://dx.doi.org/10.1021/bi0524870

  • [71] Yu, J., Cheng, Y., Xie, L. and Zhang, R. Effects of genistein and daidzein on membrane characteristics of HCT cells. Nutr. Cancer 33 (1999) 100–104. http://dx.doi.org/10.1080/01635589909514755

  • [72] Oteiza, P.I., Erlejman, A.G., Verstraeten, S.V., Keen, C.L. and Fraga, C.G. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin. Develop. Immunol. 12 (2005) 19–25. http://dx.doi.org/10.1080/10446670410001722168

OPEN ACCESS

Journal + Issues

Search