DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43

Katarzyna Szpak 1 , Ewa Wybieralska 1 , Ewa Niedziałkowska 1 , Monika Rak 1 , Iga Bechyne 1 , Marta Michalik 1 , Zbigniew Madeja 1 ,  and Jarosław Czyż 1
  • 1 Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Cracow, Poland


The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the “leading front” formation during cancer invasion.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Sohl, G. and Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 62 (2004) 228–232. http://dx.doi.org/10.1016/j.cardiores.2003.11.013

  • [2] Zhang, Y.W., Kaneda, M. and Morita, I. The gap junction-independent tumor-suppressing effect of connexin 43. J. Biol. Chem. 278 (2003) 44852–44856. http://dx.doi.org/10.1074/jbc.M305072200

  • [3] Omori, Y., Li, Q., Nishikawa, Y., Yoshioka, T., Yoshida, M., Nishimura, T. and Enomoto, K. Pathological significance of intracytoplasmic connexin proteins: implication in tumor progression. J. Membr. Biol. 218 (2007) 73–77. http://dx.doi.org/10.1007/s00232-007-9048-6

  • [4] Cronier, L., Crespin, S., Strale, P.O., Defamie, N. and Mesnil, M. Gap junctions and cancer: new functions for an old story. Antioxid. Redox. Signal. 11 (2009) 323–338. http://dx.doi.org/10.1089/ars.2008.2153

  • [5] Ionta, M., Ferreira, R.A., Pfister, S.C. and Machado-Santelli, G.M. Exogenous Cx43 expression decrease cell proliferation rate in rat hepatocarcinoma cells independently of functional gap junction. Cancer Cell Int. 9 (2009) 22. http://dx.doi.org/10.1186/1475-2867-9-22

  • [6] Elias, L.A., Wang, D.D. and Kriegstein, A.R. Gap junction adhesion is necessary for radial migration in the neocortex. Nature 448 (2007) 901–907. http://dx.doi.org/10.1038/nature06063

  • [7] Wiencken-Barger, A.E., Djukic, B., Casper, K.B. and McCarthy, K.D. A role for Connexin43 during neurodevelopment. Glia 55 (2007) 675–686. http://dx.doi.org/10.1002/glia.20484

  • [8] Lin, J.H., Yang, J., Liu, S., Takano, T., Wang, X., Gao, Q., Willecke, K. and Nedergaard, M. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23 (2003) 430–441.

  • [9] Xu, X., Francis, R., Wei, C.J., Linask, K.L. and Lo, C.W. Connexin 43-mediated modulation of polarized cell movement and the directional migration of cardiac neural crest cells. Development 133 (2006) 3629–3639. http://dx.doi.org/10.1242/dev.02543

  • [10] Olk, S., Zoidl, G. and Dermietzel, R. Connexins, cell motility, and the cytoskeleton. Cell Motil. Cytoskeleton 66 (2009) 1000–1016. http://dx.doi.org/10.1002/cm.20404

  • [11] Laird, D.W. Life cycle of connexins in health and disease. Biochem. J. 394 (2006) 527–543. http://dx.doi.org/10.1042/BJ20051922

  • [12] Trosko, J.E. Gap junctional intercellular communication as a biological “Rosetta stone” in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy. J. Membr. Biol. 218 (2007) 93–100. http://dx.doi.org/10.1007/s00232-007-9072-6

  • [13] Miekus, K., Czernik, M., Sroka, J., Czyz, J. and Madeja, Z. Contact stimulation of prostate cancer cell migration: the role of gap junctional coupling and migration stimulated by heterotypic cell-to-cell contacts in determination of the metastatic phenotype of Dunning rat prostate cancer cells. Biol. Cell 97 (2005) 893–903. http://dx.doi.org/10.1042/BC20040129

  • [14] Bates, D.C., Sin, W.C., Aftab, Q. and Naus, C.C. Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus. Glia 55 (2007) 1554–1564. http://dx.doi.org/10.1002/glia.20569

  • [15] Czyz, J. The stage-specific function of gap junctions during tumourigenesis. Cell Mol. Biol. Lett. 13 (2008) 92–102. http://dx.doi.org/10.2478/s11658-007-0039-5

  • [16] Zhang, W., DeMattia, J.A., Song, H. and Couldwell, W.T. Communication between malignant glioma cells and vascular endothelial cells through gap junctions. J. Neurosurg. 98 (2003) 846–853. http://dx.doi.org/10.3171/jns.2003.98.4.0846

  • [17] Pollmann, M.A., Shao, Q., Laird, D.W. and Sandig, M. Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture. Breast Cancer Res. 7 (2005) R522–R534. http://dx.doi.org/10.1186/bcr1042

  • [18] Prochnow, N. and Dermietzel, R. Connexons and cell adhesion: a romantic phase. Histochem. Cell Biol. 130 (2008) 71–77. http://dx.doi.org/10.1007/s00418-008-0434-7

  • [19] Boiko, A.D., Razorenova, O.V., van de, R.M., Swetter, S.M., Johnson, D.L., Ly, D.P., Butler, P.D., Yang, G.P., Joshua, B., Kaplan, M.J., Longaker, M.T. and Weissman, I.L. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466 (2010) 133–137. http://dx.doi.org/10.1038/nature09161

  • [20] Visvader, J.E. Cells of origin in cancer. Nature 469 (2011) 314–322. http://dx.doi.org/10.1038/nature09781

  • [21] Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., Ratajczak, J. and Ratajczak, M. Z. Leukemia inhibitory factor: a newly identified metastatic factor in rhabdomyosarcomas. Cancer Res. 67 (2007) 2131–2140. http://dx.doi.org/10.1158/0008-5472.CAN-06-1021

  • [22] Sroka, J., Kaminski, R., Michalik, M., Madeja, Z., Przestalski, S. and Korohoda, W. The effect of triethyllead on the motile activity of walker 256 carcinosarcoma cells. Cell Mol. Biol. Lett. 9 (2004) 15–30.

  • [23] Sroka, J., Antosik, A., Czyz, J., Nalvarte, I., Olsson, J.M., Spyrou, G. and Madeja, Z. Overexpression of thioredoxin reductase 1 inhibits migration of HEK-293 cells. Biol. Cell 99 (2007) 677–687. http://dx.doi.org/10.1042/BC20070024

  • [24] Czyz, J., Guan, K., Zeng, Q., and Wobus, A.M. Loss of beta1 integrin function results in upregulation of connexin expression in embryonic stem cell-derived cardiomyocytes. Int. J. Dev. Biol. 49 (2005) 33–41. http://dx.doi.org/10.1387/ijdb.041835jc

  • [25] Daniel-Wojcik, A., Misztal, K., Bechyne, I., Sroka, J., Miekus, K., Madeja, Z. and Czyz, J. Cell motility affects the intensity of gap junctional coupling in prostate carcinoma and melanoma cell populations. Int. J. Oncol. 33 (2008) 309–315.

  • [26] Czyz, J., Irmer, U., Schulz, G., Mindermann, A. and Hulser, D.F. Gap-junctional coupling measured by flow cytometry. Exp. Cell Res. 255 (2000) 40–46. http://dx.doi.org/10.1006/excr.1999.4760

  • [27] Sottoriva, A., Verhoeff, J.J., Borovski, T., McWeeney, S.K., Naumov, L., Medema, J.P., Sloot, P.M. and Vermeulen, L. Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Res. 70 (2010) 46–56. http://dx.doi.org/10.1158/0008-5472.CAN-09-3663

  • [28] Baran, B., Bechyne, I., Siedlar, M., Szpak, K., Mytar, B., Sroka, J., Laczna, E., Madeja, Z., Zembala, M. and Czyz, J. Blood monocytes stimulate migration of human pancreatic carcinoma cells in vitro: the role of tumour necrosis factor — alpha. Eur. J. Cell Biol. 88 (2009) 743–752. http://dx.doi.org/10.1016/j.ejcb.2009.08.002

  • [29] Kumar, S. and Weaver, V.M. Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28 (2009) 113–127. http://dx.doi.org/10.1007/s10555-008-9173-4

  • [30] Friedl, P. and Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Exp. Med. 207 (2010) 11–19. http://dx.doi.org/10.1084/JEM2071OIA4

  • [31] Gupta, G.P. and Massague, J. Cancer metastasis: building a framework. Cell 127 (2006) 679–695. http://dx.doi.org/10.1016/j.cell.2006.11.001

  • [32] Langley, R.R. and Fidler, I.J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev. 28 (2007) 297–321. http://dx.doi.org/10.1210/er.2006-0027

  • [33] Watanabe, N., Dickinson, D.A., Krzywanski, D.M., Iles, K.E., Zhang, H., Venglarik, C.J., and Forman, H.J. A549 subclones demonstrate heterogeneity in toxicological sensitivity and antioxidant profile. Am. J. Physiol Lung Cell Mol. Physiol 283 (2002) L726–L736.

  • [34] Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M.E., Neve, R.M. and Thompson, E.W. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin. Exp. Metastasis 25 (2008) 629–642. http://dx.doi.org/10.1007/s10585-008-9170-6

  • [35] Ito, A., Katoh, F., Kataoka, T.R., Okada, M., Tsubota, N., Asada, H., Yoshikawa, K., Maeda, S., Kitamura, Y., Yamasaki, H. and Nojima, H. A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J. Clin. Invest. 105 (2000) 1189–1197. http://dx.doi.org/10.1172/JCI8257

  • [36] Huang, S. and Ingber, D.E. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8 (2005) 175–176. http://dx.doi.org/10.1016/j.ccr.2005.08.009

  • [37] Suresh, S. Biomechanics and biophysics of cancer cells. Acta Biomater. 3 (2007) 413–438. http://dx.doi.org/10.1016/j.actbio.2007.04.002

  • [38] Kanczuga-Koda, L., Sulkowski, S., Lenczewski, A., Koda, M., Wincewicz, A., Baltaziak, M. and Sulkowska, M. Increased expression of connexins 26 and 43 in lymph node metastases of breast cancer. J. Clin. Pathol. 59 (2006) 429–433. http://dx.doi.org/10.1136/jcp.2005.029272

  • [39] Iwasaki, H. and Suda, T. Cancer stem cells and their niche. Cancer Sci. 100 (2009) 1166–1172. http://dx.doi.org/10.1111/j.1349-7006.2009.01177.x

  • [40] Voog, J. and Jones, D.L. Stem cells and the niche: a dynamic duo. Cell Stem Cell 6 (2010) 103–115. http://dx.doi.org/10.1016/j.stem.2010.01.011

  • [41] Friedl, P., Hegerfeldt, Y. and Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48 (2004) 441–449. http://dx.doi.org/10.1387/ijdb.041821pf


Journal + Issues