Multipliers of sequence spaces

Raymond Cheng 1 , Javad Mashreghi 2 , and William T. Ross 3
  • 1 Old Dominion University, Norfolk, , Virginia, USA
  • 2 Université Laval, Ville de , Québec, Canada
  • 3 University of Richmond, , Richmond, USA

Abstract

This paper is selective survey on the space lAp and its multipliers. It also includes some connections of multipliers to Birkhoff-James orthogonality

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Evgeny Abakumov and Alexander Borichev. Shift invariant subspaces with arbitrary indices in lp spaces. J. Funct. Anal., 188(1):1-26, 2002.

  • [2] J. Alonso, H. Martini, and S. Wu. On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces. Aequationes Math., 83(1-2):153-189, 2012.

  • [3] G. I. Arkhipov, A. A. Karatsuba, and V. N. Chubarikov. Teoriya kratnykh trigonometricheskikh summ. “Nauka”, Moscow, 1987.

  • [4] N. L. Carothers. A Short Course on Banach Space Theory, volume 64 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2005.

  • [5] R. Cheng and W. T. Ross. An inner-outer factorization in `p with applications to ARMA processes. J. Math. Anal. Appl., 437:396-418, 2016.

  • [6] Karel de Leeuw. On Lp multipliers. Ann. of Math. (2), 81:364-379, 1965.

  • [7] Peter L. Duren. Theory of Hp Spaces. Pure and Applied Mathematics, Vol. 38. Academic Press, New York-London, 1970.

  • [8] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. I. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, With a preface by Mina Rees, With a foreword by E. C. Watson, Reprint of the 1953 original.

  • [9] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. II. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, Reprint of the 1953 original.

  • [10] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. III. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. Based on notes left by Harry Bateman, Reprint of the 1955 original.

  • [11] S. R. Garcia, J. Mashreghi, and W. Ross. Introduction to model spaces and their operators. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2016.

  • [12] Lars Hörmander. Estimates for translation invariant operators in Lp spaces. Acta Math., 104:93-140, 1960.

  • [13] R. C. James. Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc., 61:265-292, 1947.

  • [14] V. Lebedev and A. Olevskiĭ. Idempotents of Fourier multiplier algebra. Geom. Funct. Anal., 4(5):539-544, 1994.

  • [15] V. V. Lebedev. Inner functions and lp-multipliers. Funktsional. Anal. i Prilozhen., 32(4):10-21, 95, 1998.

  • [16] V. V. Lebedev. Spectra of inner functions and lp-multipliers. In Complex analysis, operators, and related topics, volume 113 of Oper. Theory Adv. Appl., pages 205-212. Birkhäuser, Basel, 2000.

  • [17] V. V. Lebedev and A. M. Olevskiĭ. Fourier Lp-multipliers with bounded powers. Izv. Ross. Akad. Nauk Ser. Mat., 70(3):129-166, 2006.

  • [18] Vladimir Lebedev and Alexander Olevskiĭ. Bounded groups of translation invariant operators. C. R. Acad. Sci. Paris Sér. I Math., 322(2):143-147, 1996.

  • [19] M. Marden. Geometry of Polynomials, 2nd Ed. Mathematical Surveys, No. 3. American Mathematical Society: Providence, RI, 1966.

  • [20] Javad Mashreghi. Representation theorems in Hardy spaces, volume 74 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2009.

  • [21] N. K. Nikol’skiĭ. On spaces and algebras of Toeplitz matrices operating in lp. Sibirsk. Mat. Ž., 7:146-158, 1966.

  • [22] J. Michael Steele. The Cauchy-Schwarz master class. MAA Problem Books Series. Mathematical Association of America, Washington, DC; Cambridge University Press, Cambridge, 2004. An introduction to the art of mathematical inequalities.

  • [23] I. È. Verbickiĭ. Multipliers of spaces lp A . Funktsional. Anal. i Prilozhen., 14(3):67-68, 1980.

  • [24] S. A. Vinogradov. Multipliers of power series with sequence of coefficients from lp. Zap. Nauˇcn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 39:30-39, 1974. Investigations on linear operators and the theory of functions, IV.

  • [25] S. A. Vinogradov. Multiplicative properties of power series with a sequence of coefficients from lp. Dokl. Akad. Nauk SSSR, 254(6):1301-1306, 1980.

  • [26] A. Zygmund. Trigonometric Series. Vol. I, II. Cambridge Mathematical Library. Cambridge University Press, Cambridge, third edition, 2002. With a foreword by Robert A. Fefferman.

OPEN ACCESS

Journal + Issues

Search