Some Hilbert spaces related with the Dirichlet space

Nicola Arcozzi 1 , Pavel Mozolyako 2 , Karl-Mikael Perfekt 3 , Stefan Richter 4  and Giulia Sarfatti 5
  • 1 Università di Bologna, Dipartimento di Matematica, Piazza di Porta S.Donato 5, Bologna
  • 2 Chebyshev Lab at St. Petersburg State University, 14th Line 29B, Vasilyevsky Island, St. Petersburg 199178, Russia
  • 3 Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
  • 4 Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, USA
  • 5 Istituto Nazionale di Alta Matematica “F. Severi”, Città Universitaria, Piazzale Aldo Moro 5, 00185 Roma, and Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, 4, place Jussieu, F-75252 Paris, France


We study the reproducing kernel Hilbert space with kernel kd , where d is a positive integer and k is the reproducing kernel of the analytic Dirichlet space.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. Agler, J. E. McCarthy, Pick interpolation and Hilbert function spaces, Graduate Studies in Mathematics, 44 (American Mathematical Society, Providence, RI, 2002), xx+308 pp. ISBN: 0-8218-2898-3.

  • [2] N. Arcozzi, R. Rochberg, E. Sawyer, Carleson measures for analytic Besov spaces, Rev. Mat. Iberoamericana 18 (2002), no. 2, 443-510.

  • [3] N. Arcozzi, R. Rochberg, E. Sawyer, B. D. Wick, Function spaces related to the Dirichlet space, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 1-18.

  • [4] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68, (1950) 337-404.

  • [5] D. Bekollé, A. Bonami, Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 18, A775- A778 (in French).

  • [6] B. Boe, An interpolation theorem for Hilbert spaces with Nevanlinna-Pick kernel, Proc. Amer. Math. Soc. 133 (2005), no. 7, 2077- 2081.

  • [7] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), no. 2, 319- 336.

  • [8] K. Seip, Interpolation and sampling in spaces of analytic functions, University Lecture Series, 33 (American Mathematical Society, Providence, RI, 2004), xii+139 pp. ISBN: 0-8218-3554-8.


Journal + Issues

Concrete Operators is devoted to original research articles on all special classes of linear operators acting on function spaces and their applications. Concrete operators have shown to be prevalent in almost all domains of science and technology and are interconnected to many other branches of mathematics. Concrete Operators publishes articles devoted to all special classes of linear operators acting on function spaces.