The project was carried out by the research group C8 of the SFB 701 in Bielefeld, and all five authors are grateful for the support of the SFB. The fourth and fifth named authors also gratefully acknowledge support of the SFB 878 in Münster.
We prove that the braided Thompson’s groups
In an appendix, Zaremsky uses these connectivity results to exhibit families of subgroups of the pure braid group that are highly generating, in the sense of Abels and Holz.
Abels H. and Holz S., Higher generation by subgroups, J. Algebra 160 (1993), no. 2, 310–341.
Abramenko P. and Brown K. S., Buildings, Grad. Texts in Math. 248, Springer-Verlag, New York 2008.
Athanasiadis C. A., Decompositions and connectivity of matching and chessboard complexes, Discrete Comput. Geom. 31 (2004), no. 3, 395–403.
Belk J. M. and Matucci F., Conjugacy and dynamics in Thompson’s groups, Geom. Dedicata 169 (2014), no. 1, 239–261.
Bestvina M. and Brady N., Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445–470.
Birman J. S., Braids, links, and mapping class groups, Ann. of Math. Stud. 82, Princeton University Press, Princeton 1974.
Björner A., Lovász L., Vrećica S. T. and Živaljević R. T., Chessboard complexes and matching complexes, J. Lond. Math. Soc. (2) 49 (1994), no. 1, 25–39.
Brady T., Burillo J., Cleary S. and Stein M., Pure braid subgroups of braided Thompson’s groups, Publ. Mat. 52 (2008), no. 1, 57–89.
Bridson M. R. and Haefliger A., Metric spaces of non-positive curvature, Grundlehren Math. Wiss. 319, Springer-Verlag, Berlin 1999.
Brin M. G., The algebra of strand splitting. II. A presentation for the braid group on one strand, Internat. J. Algebra Comput. 16 (2006), no. 1, 203–219.
Brin M. G., The algebra of strand splitting. I. A braided version of Thompson’s group V, J. Group Theory 10 (2007), no. 6, 757–788.
Brown K. S., Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987), 45–75.
Brown K. S., The geometry of finitely presented infinite simple groups, Algorithms and classification in combinatorial group theory (Berkeley 1989), Math. Sci. Res. Inst. Publ. 23, Springer-Verlag, New York (1992), 121–136.
Brown K. S., The homology of Richard Thompson’s group F, Topological and asymptotic aspects of group theory, Contemp. Math. 394, American Mathematical Society, Providence (2006), 47–59.
Burillo J. and Cleary S., Metric properties of braided Thompson’s groups, Indiana Univ. Math. J. 58 (2009), no. 2, 605–615.
Cannon J. W., Floyd W. J. and Parry W. R., Introductory notes on Richard Thompson’s groups, Enseign. Math. (2) 42 (1996), no. 3–4, 215–256.
Charney R., The Deligne complex for the four-strand braid group, Trans. Amer. Math. Soc. 356 (2004), no. 10, 3881–3897.
Degenhardt F., Endlichkeitseigenschaften gewisser Gruppen von Zöpfen unendlicher Ordnung, Ph.D. thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main 2000.
Dehornoy P., The group of parenthesized braids, Adv. Math. 205 (2006), no. 2, 354–409.
Farb B. and Margalit D., A primer on mapping class groups, Princeton Math. Ser. 49, Princeton University Press, Princeton 2012.
Farley D. S., Finiteness and CAT ( 0 ) $\rm CAT(0)$ properties of diagram groups, Topology 42 (2003), no. 5, 1065–1082.
Fluch M., Marschler M., Witzel S. and Zaremsky M. C. B., The Brin–Thompson groups sV are of type F ∞ $\text{F}_{\infty}$, Pacific J. Math. 266 (2013), no. 2, 283–295.
Funar L., Braided Houghton groups as mapping class groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53 (2007), no. 2, 229–240.
Funar L. and Kapoudjian C., The braided Ptolemy–Thompson group is finitely presented, Geom. Topol. 12 (2008), no. 1, 475–530.
Funar L. and Kapoudjian C., The braided Ptolemy–Thompson group is asynchronously combable, Comment. Math. Helv. 86 (2011), no. 3, 707–768.
Hatcher A., On triangulations of surfaces, Topology Appl. 40 (1991), no. 2, 189–194.
Kassel C. and Turaev V., Braid groups, Grad. Texts in Math. 247, Springer-Verlag, New York 2008.
Margalit D. and McCammond J., Geometric presentations for the pure braid group, J. Knot Theory Ramifications 18 (2009), no. 1, 1–20.
Meier J., Meinert H. and VanWyk L., Higher generation subgroup sets and the Σ-invariants of graph groups, Comment. Math. Helv. 73 (1998), no. 1, 22–44.
Putman A., Representation stability, congruence subgroups, and mapping class groups, preprint 2013, http://arxiv.org/abs/1201.4876v2.
Quillen D., Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28 (1978), no. 2, 101–128.
Spanier E. H., Algebraic topology, McGraw–Hill, New York 1966.
Squier C. C., The homological algebra of Artin groups, Math. Scand. 75 (1994), no. 1, 5–43.
Stein M., Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992), no. 2, 477–514.
The project was carried out by the research group C8 of the SFB 701 in Bielefeld, and all five authors are grateful for the support of the SFB. The fourth and fifth named authors also gratefully acknowledge support of the SFB 878 in Münster.