Type II ancient compact solutions to the Yamabe flow

Panagiota Daskalopoulos 1 , Manuel del Pino 2 ,  und Natasa Sesum 3
  • 1 Department of Mathematics, Columbia University, 2990 Broadway, New York, USA
  • 2 Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
  • 3 Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, USA
Panagiota Daskalopoulos
  • Korrespondenzautor
  • Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA
  • E-Mail
  • Suche nach weiteren Artikeln:
  • degruyter.comGoogle Scholar
, Manuel del Pino
  • Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
  • E-Mail
  • Suche nach weiteren Artikeln:
  • degruyter.comGoogle Scholar
und Natasa Sesum

Abstract

We construct new type II ancient compact solutions to the Yamabe flow. Our solutions are rotationally symmetric and converge, as t-, to a tower of two spheres. Their curvature operator changes sign. We allow two time-dependent parameters in our ansatz. We use perturbation theory, via fixed point arguments, based on sharp estimates on ancient solutions of the approximated linear equation and careful estimation of the error terms which allow us to make the right choice of parameters. Our technique may be viewed as a parabolic analogue of gluing two exact solutions to the rescaled equation, that is the spheres, with narrow cylindrical necks to obtain a new ancient solution to the Yamabe flow. The result generalizes to the gluing of k spheres for any k2, in such a way the configuration of radii of the spheres glued is driven as t- by a First order Toda system.

  • [1]

    S. Brendle, Convergence of the Yamabe flow for arbitrary initial energy, J. Differential Geom. 69 (2005), 217–278.

    • Crossref
    • Zitation exportieren
  • [2]

    S. Brendle, Convergence of the Yamabe flow in dimension 6 and higher, Invent. Math. 170 (2007), 541–576.

    • Crossref
    • Zitation exportieren
  • [3]

    B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math. 65 (1992), 1003–1014.

  • [4]

    P. Daskalopoulos and N. Sesum, Classification of ancient solutions to the Ricci flow on surfaces, J. Differential Geom. 91 (2012), no. 2, 171–214.

    • Crossref
    • Zitation exportieren
  • [5]

    M. del Pino, J. Dolbeault and M. Musso, “Bubble-tower” radial solutions in the slightly supercritical Brezis–Nirenberg problem, J. Differential Equations 193 (2003), no. 2, 280–306.

    • Crossref
    • Zitation exportieren
  • [6]

    M. del Pino and M. Sáez, On the extinction profile for solutions of u t = Δ u ( N - 2 ) / ( N + 2 ) {u_{t}=\Delta u^{(N-2)/(N+2)}}, Indiana Univ. Math. J. 50 (2001), 611–628.

    • Crossref
    • Zitation exportieren
  • [7]

    Y. Ge, R. Jing and F. Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal. 221 (2005), no. 2, 251–302.

    • Crossref
    • Zitation exportieren
  • [8]

    R. S. Hamilton, Lectures on geometric flows, unpublished manuscript, (1989).

  • [9]

    N. Kapouleas, Complete constant mean curvature surfaces in Euclidean three-space, Ann. of Math. (2) 131 (1990), 239–330.

    • Crossref
    • Zitation exportieren
  • [10]

    N. Kapouleas, Compact constant mean curvature surfaces in Euclidean three-space, J. Differential Geom. 33 (1991), no. 3, 683–715.

    • Crossref
    • Zitation exportieren
  • [11]

    N. Kapouleas, Constant mean curvature surfaces constructed by fusing Wente tori, Invent. Math. 119 (1995), no. 3, 443–518.

    • Crossref
    • Zitation exportieren
  • [12]

    J. R. King, Exact polynomial solutions to some nonlinear diffusion equations, Phys. D 64 (1993), 39–65.

  • [13]

    J. R. King, Asymptotic results for nonlinear diffusion, European J. Appl. Math. 5 (1994), 359–390.

    • Crossref
    • Zitation exportieren
  • [14]

    R. Mazzeo, F. Pacard and D. Pollack, Connected sums of constant mean curvature surfaces in Euclidean 3 space, J. reine angew. Math. 536 (2001), 115–165.

  • [15]

    R. Mazzeo, D. Pollack and K. Uhlenbeck, Connected sum constructions for constant scalar curvature metrics, Topol. Methods Nonlinear Anal. 6 (1995), no. 2, 207–233.

    • Crossref
    • Zitation exportieren
  • [16]

    X. H. Nguyen, Construction of complete embedded self-similar surfaces under mean curvature flow, preprint (2010), http://arxiv.org/abs/1004.2657.

  • [17]

    P. Rosenau, Fast and superfast diffusion processes, Phys. Rev. Lett. 74 (1995), 1056–1059.

    • Crossref
    • PubMed
    • Zitation exportieren
  • [18]

    R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math. 41 (1988), 317–392.

    • Crossref
    • Zitation exportieren
  • [19]

    H. Schwetlick and M. Struwe, Convergence of the Yamabe flow for “large” energies, J. reine angew. Math. 562 (2003), 59–100.

  • [20]

    R. Ye, Global existence and convergence of Yamabe flow, J. Differential Geom. 39 (1994), 35–50.

    • Crossref
    • Zitation exportieren
Artikel kaufen
Erhalten sie sofort unbegrenzten Zugriff auf den Artikel.
Anmelden
Haben Sie den Zugang bereits erworben? Melden Sie sich bitte an.


oder
Zugriff über Ihre Institution

Zeitschrift + Hefte

The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle’s Journal. In the 190 years of its existence, Crelle’s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals.

Suche