Spectral gap characterization of full type III factors

Amine Marrakchi 1
  • 1 École Normale Supérieure, 45 rue d’Ulm 75230, Paris, France
Amine Marrakchi
  • Corresponding author
  • École Normale Supérieure, 45 rue d’Ulm 75230, Paris, Cedex 05, France, and Laboratoire de Mathématiques d’Orsay, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar


We give a spectral gap characterization of fullness for type III factors which is the analog of a theorem of Connes in the tracial case. Using this criterion, we generalize a theorem of Jones by proving that if M is a full factor and σ:GAut(M) is an outer action of a discrete group G whose image in Out(M) is discrete, then the crossed product von Neumann algebra MσG is also a full factor. We apply this result to prove the following conjecture of Tomatsu–Ueda: the continuous core of a type III1 factor M is full if and only if M is full and its τ invariant is the usual topology on .

  • [1]

    H. Ando and U. Haagerup, Ultraproducts of von Neumann algebras, J. Funct. Anal. 266 (2014), no. 12, 6842–6913.

    • Crossref
    • Export Citation
  • [2]

    A. Connes, Almost periodic states and factors of type III 1 {\mathrm{III}_{1}}, J. Funct. Anal. 16 (1974), no. 4, 415–445.

    • Crossref
    • Export Citation
  • [3]

    A. Connes, Classification of injective factors cases II 1 {\mathrm{II}_{1}}, II {\mathrm{II}_{\infty}}, III λ {\mathrm{III}_{\lambda}}, λ 1 {\lambda\neq 1}, Ann. of Math. (2) 104 (1976), 73–115.

  • [4]

    A. Connes, Factors of type III 1 {\mathrm{III}_{1}}, property L λ {\mathrm{L}^{\prime}_{\lambda}} and closure of inner automorphisms, J. Operator Theory 14 (1985), 189–211.

  • [5]

    A. Connes and E. Størmer, Homogeneity of the state space of factors of type III 1 {\mathrm{III}_{1}}, J. Funct. Anal. 28 (1978), no. 2, 187–196.

    • Crossref
    • Export Citation
  • [6]

    J. Dixmier and O. Maréchal, Vecteurs totalisateurs d’une algèbre de von Neumann, Comm. Math. Phys. 22 (1971), no. 1, 44–50.

    • Crossref
    • Export Citation
  • [7]

    U. Haagerup, L p {\mathrm{L}^{p}}-spaces associated with an arbitrary von Neumann algebra, Algebres d’opérateurs et leurs applications en physique mathématique (Marseille 1977), Coll. Int. Centre Nat. Rech. Sci. 274, Editions du Centre National de la Recherche Scientifique, Paris (1979), 175–184.

  • [8]

    U. Haagerup, Operator valued weights in von Neumann algebras. I, J. Funct. Anal. 32 (1979), no. 2, 175–206.

    • Crossref
    • Export Citation
  • [9]

    V. F. Jones, Central sequences in crossed products of full factors, Duke Math. J 49 (1982), no. 1, 29–33.

    • Crossref
    • Export Citation
  • [10]

    H. Kosaki, Applications of uniform convexity of noncommutative L p {\mathrm{L}^{p}}-spaces, Trans. Amer. Math. Soc. 283 (1984), no. 1, 265–282.

  • [11]

    S. Popa, On the classification of inductive limits of II 1 {\mathrm{II}_{1}} factors with spectral gap, Trans. Amer. Math. Soc. 364 (2012), no. 6, 2987–3000.

    • Crossref
    • Export Citation
  • [12]

    Y. Raynaud, On ultrapowers of non-commutative L p {\mathrm{L}^{p}}-spaces, J. Operator Theory 48 (2002), no. 1, 41–68.

  • [13]

    D. Shlyakhtenko, On the classification of full factors of type III, Trans. Amer. Math. Soc. 356 (2004), no. 10, 4143–4159.

    • Crossref
    • Export Citation
  • [14]

    M. Takesaki, Operator algebras II, Springer, New York 2001.

  • [15]

    R. Tomatsu and Y. Ueda, A characterization of fullness of continuous cores of type III 1 {\mathrm{III}_{1}} free product factors, Kyoto J. Math 56 (2014), no. 3, 599–610.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues

The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle’s Journal. In the 190 years of its existence, Crelle’s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals.