On local integration of Lie brackets

Alejandro Cabrera
  • Corresponding author
  • Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, Rio de Janeiro, RJ 21941-909, Brazil
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ioan Mărcuţ
  • IMAPP, Department of Mathematics, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, 6500 GL, The Netherlands
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and María Amelia Salazar
  • Instituto de Matemática e Estatística, GMA, Universidade Federal Fluminense, Rua Professor Marcos Waldemar de Freitas Reis s/n, Gragoatá, Niterói, CEP: 24.210-201, Rio de Janeiro, Brazil
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar


We give a direct, explicit and self-contained construction of a local Lie groupoid integrating a given Lie algebroid which only depends on the choice of a spray vector field lifting the underlying anchor map. This construction leads to a complete account of local Lie theory and, in particular, to a finite-dimensional proof of the fact that the category of germs of local Lie groupoids is equivalent to that of Lie algebroids.

  • [1]

    R. Almeida and P. Molino, Suites d’Atiyah et feuilletages transversalement complets, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), no. 1, 13–15.

  • [2]

    A. Cabrera, I. Mărcuţ and M. A. Salazar, Explicit formulas for multiplicative objects near the identities, in preparation.

  • [3]

    A. Coste, P. Dazord and A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, Vol. 2, Publ. Dép. Math. Nouvelle Sér. A 87, Université Claude-Bernard, Lyon (1987), 1–62.

  • [4]

    M.  Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv. 78 (2003), no. 4, 681–721.

  • [5]

    M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620.

  • [6]

    J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer, Berlin 2000.

  • [7]

    R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), no. 1, 119–179.

  • [8]

    R. L. Fernandes and I. Struchiner, The classifying Lie algebroid of a geometric structure I: Classes of coframes, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2419–2462.

  • [9]

    P. J. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J. Algebra 129 (1990), no. 1, 194–230.

  • [10]

    D. Li-Bland and E. Meinrenken, On the van Est homomorphism for Lie groupoids, Enseign. Math. 61 (2015), no. 1–2, 93–137.

  • [11]

    K. C. H. Mackenzie, General theory of Lie groupoids and Lie algebroids, London Math. Soc. Lecture Note Ser. 213, Cambridge University Press, Cambridge 2005.

  • [12]

    J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Relations entre propriétés locales et globales, C. R. Acad. Sci. Paris Sér. A-B 263 (1966), A907–A910.

  • [13]

    J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différenetiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A245–A248.

  • [14]

    J. Pradines, Troisième théorème de Lie les groupoïdes différentiables, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A21–A23.

  • [15]

    W. T. van Est, Rapport sur les S-atlas, Astérisque (1984), no. 116, 235–292.

  • [16]

    A. Weinstein and P. Xu, Extensions of symplectic groupoids and quantization, J. reine angew. Math. 417 (1991), 159–189.

  • [17]

    O. Yudilevich, The role of the Jacobi identity in solving the Maurer–Cartan structure equation, Pacific J. Math. 282 (2016), no. 2, 487–510.

Purchase article
Get instant unlimited access to the article.
Price including VAT
Log in
Already have access? Please log in.

Journal + Issues

The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle’s Journal. In the 190 years of its existence, Crelle’s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals.