- Received:
- 2019-11-11
- Revised:
- 2020-08-19
- Published Online:
- 2021-01-09
- Citation Information:
- Journal für die reine und angewandte Mathematik, 000010151520200048, eISSN 1435-5345, ISSN 0075-4102, DOI: https://doi.org/10.1515/crelle-2020-0048.
We show that any Weyl group orbit of weights for the Tannakian group of semisimple holonomic
A. Andreotti and A. L. Mayer, On period relations for abelian integrals on algebraic curves, Ann. Sc. Norm. Super. Pisa Cl. Sci. (3) 21 (1967), 189–238.
M. F. Atiyah and D. O. Tall, Group representations, λ-rings and the J-homomorphism, Topology 8 (1969), 253–297.
A. A. Beĭlinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy 1981), Astérisque 100, Soc. Math. France, Paris (1982), 5–171.
C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed., Grundlehren Math. Wiss. 302, Springer, Berlin 2004.
T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Grad. Texts in Math. 98, Springer, New York 1985.
T. Bühler, Exact categories, Expo. Math. 28 (2010), no. 1, 1–69.
S. E. Cappell, L. Maxim, J. Schürmann, J. L. Shaneson and S. Yokura, Characteristic classes of symmetric products of complex quasi-projective varieties, J. reine angew. Math. 728 (2017), 35–63.
S. Casalaina-Martin, M. Popa and S. Schreieder, Generic vanishing and minimal cohomology classes on abelian fivefolds, J. Algebraic Geom. 27 (2018), no. 3, 553–581.
G. Codogni, S. Grushevsky and E. Sernesi, The degree of the Gauss map of the theta divisor, Algebra Number Theory 11 (2017), 983–1001.
M. A. A. de Cataldo and L. Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4, 535–633.
O. Debarre, Annulation de thêtaconstantes sur les variétés abéliennes de dimension quatre, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 20, 885–888.
O. Debarre, Complex tori and abelian varieties, SMF/AMS Texts Monogr. 11, American Mathematical Society, Providence 2005.
P. Deligne, Catégories tensorielles, Moscow Math. J. 2 (2002), 227–248.
P. Deligne and J. S. Milne, Tannakian categories, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, Springer, Berlin (1982), 101–228.
L. Ein and R. Lazarsfeld, Singularities of theta divisors and the birational geometry of irregular varieties, J. Amer. Math. Soc. 10 (1997), no. 1, 243–258.
H. Flenner, Join varieties and intersection theory, Recent progress in intersection theory (Bologna 1997), Trends Math., Birkhäuser, Boston (2000), 129–197.
H. Flenner, L. O’Carroll and W. Vogel, Joins and intersections, Springer Monogr. Math., Springer, Berlin 1999.
J. Franecki and M. Kapranov, The Gauss map and a noncompact Riemann–Roch formula for constructible sheaves on semiabelian varieties, Duke Math. J. 104 (2000), no. 1, 171–180.
W. Fulton, Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin 1998.
R. Goodman and N. R. Wallach, Symmetry, representations, and invariants, Grad. Texts in Math. 255, Springer, New York 2009.
F. Heinloth, A note on functional equations for zeta functions with values in Chow motives, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, 1927–1945.
R. Hotta, K. Takeuchi and T. Tanisaki, D-modules, perverse sheaves, and representation theory, Progr. Math. 236, Birkhäuser, Boston 2008.
R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc. 8, Bar-Ilan University, Ramat Gan (1995), 1–182.
G. Kennedy, MacPherson’s Chern classes of singular algebraic varieties, Comm. Algebra 18 (1990), no. 9, 2821–2839.
S. L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297.
D. Knutson, λ-rings and the representation theory of the symmetric group, Lecture Notes in Math. 308, Springer, Berlin 1973.
T. Krämer, Cubic threefolds, Fano surfaces and the monodromy of the Gauss map, Manuscripta Math. 149 (2016), no. 3–4, 303–314.
T. Krämer, Characteristic cycles and the microlocal geometry of the Gauss map I, preprint (2018), https://arxiv.org/abs/1604.02389v2.
T. Krämer, Summands of theta divisors on Jacobians, Compos. Math. 156 (2020), no. 7, 1457–1475.
T. Krämer and R. Weissauer, On the Tannaka group attached to the theta divisor of a generic principally polarized abelian variety, Math. Z. 281 (2015), no. 3–4, 723–745.
T. Krämer and R. Weissauer, Semisimple super Tannakian categories with a small tensor generator, Pacific J. Math. 276 (2015), no. 1, 229–248.
T. Krämer and R. Weissauer, Vanishing theorems for constructible sheaves on abelian varieties, J. Algebraic Geom. 24 (2015), no. 3, 531–568.
J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs 1984), Springer, New York (1986), 103–150.
P. Nang and K. Takeuchi, Characteristic cycles of perverse sheaves and Milnor fibers, Math. Z. 249 (2005), no. 3, 493–511.
G. Pareschi and M. Popa, Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann. 340 (2008), no. 1, 209–222.
D. Quillen, Higher algebraic K-theory. I, Algebraic K-theory, I: Higher K-theories (Seattle 1972), Lecture Notes in Math. 341, Springer, Berlin (1973), 85–147.
Z. Ran, On subvarieties of abelian varieties, Invent. Math. 62 (1981), no. 3, 459–479.
C. Sabbah, Quelques remarques sur la géométrie des espaces conormaux, Differential systems and singularities (Luminy 1983), Astérisque 130, Société Mathématique de France, Paris (1985), 161–192.
C. Schnell, Holonomic D-modules on abelian varieties, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 1–55.
S. Schreieder, Theta divisors with curve summands and the Schottky problem, Math. Ann. 365 (2016), no. 3–4, 1017–1039.
S. Schreieder, Decomposable theta divisors and generic vanishing, Int. Math. Res. Not. IMRN 2017 (2017), no. 16, 4984–5009.
J. Schürmann and M. Tibăr, Index formula for MacPherson cycles of affine algebraic varieties, Tohoku Math. J. (2) 62 (2010), no. 1, 29–44.
R. Smith and R. Varley, Components of the locus of singular theta divisors of genus 5, Algebraic geometry – Sitges (Barcelona 1983), Lecture Notes in Math. 1124, Springer, Berlin (1985), 338–416.
J. R. Stembridge, Multiplicity-free products and restrictions of Weyl characters, Represent. Theory 7 (2003), 404–439.
R. Varley, Weddle’s surfaces, Humbert’s curves, and a certain 4-dimensional abelian variety, Amer. J. Math. 108 (1986), no. 4, 931–951.
W. Vogel, Lectures on results on Bezout’s theorem, Tata Inst. Fund. Res. Lect. Math. Phys. 74, Springer, Berlin 1984.
R. Weissauer, Brill–Noether sheaves, preprint (2007), https://arxiv.org/abs/math/0610923v4.
R. Weissauer, Degenerate perverse sheaves on abelian varieties, preprint (2015), https://arxiv.org/abs/1204.2247v3.
R. Weissauer, On subvarieties of abelian varieties with degenerate Gauss mapping, preprint (2015), https://arxiv.org/abs/1110.0095v3.