Characterization of vanadia catalysts on structured micro-fibrous glass supports for selective oxidation of hydrogen sulfide

Tatyana V. Larina 1 , Svetlana V. Cherepanova 1 , 2 , Nina A. Rudina 1 , Boris A. Kolesov 5 , and Andrey N. Zagoruiko 2 , 3 , 4
  • 1 Boreskov Institute of Catalysis, prospekt Lavrentieva 5, Novosibirsk, 630090, Russia
  • 2 Novosibirsk Technical State University, prospekt K.Marksa, Novosibirsk, 630073, Russia
  • 3 Tomsk Polytechnic University, prospekt Lenina, 30, Tomsk, 634050, Russia
  • 4 Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova Str. 2, Novosibirsk, 630090, Russia
  • 5 Institute of Inorganic Chemistry, SB RAS, pr. Lavrentieva, 3, Novosibirsk, 630090, Russia


This work is focused on the characterization of a novel vanadium pentoxide catalysts on a glass-fiber support. The catalyst support consists of a non-porous glass-fiber fabric covered with an additional external surface layer of porous secondary support of SiO2. The vanadia active component is synthesized from vanadyl oxalate precursor by means of an impulse surface thermo-synthesis method. Such catalysts demonstrate high activity and appropriate selectivity in the reaction of H2S oxidation by oxygen into sulfur in the practically important temperature range below 200°C. According to the characterization data, the freshly prepared vanadia catalyst partially consists of mostly the amorphous and badly ordered vanadia with some part of the wellcrystallized V2O5 phase. Under the reaction conditions the main part of vanadia in the catalyst remains in the amorphous V2O5 form, while the less part becomes reduces into of VO2 and other vanadium oxides (such as VO, V2O3 V3O7 and V4O9). Most probably, the crystallized V2O5 in course of reaction is responsible for the deep oxidation of hydrogen sulphide into SO2, while the lower vanadium oxides promote the selective H2S oxidation into elemental sulfur.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Piéplu A., Saur O., Lavalley J.C., Legendre O., Nédez C., Claus catalysis and H2S selective oxidation. Catal. Rev., Sci. Eng. 1998, 40, 409-450.

  • [2] Wieckowska J., Catalytic and adsorptive desulphurization of gases. Catal. Today, 1995, 24, 405-465.

  • [3] Zagoruiko A.N., Shinkarev V.V., Vanag S.V., Bukhtiyarova G.A., Catalytic processes and catalysts for production of elemental sulfur from sulfur-containing gases. Catalysis in Industry, 2010, 4, 343-352.

  • [4] Lagas J.A., Borsboom J., Heijkoop G., Claus process gets extra boost. Hydrocarbon Proc., 1989, 68, 40-42.

  • [5] van Nisselrooy P.F.M.T., Lagas J.A., Superclaus reduces SO2 emission by the use of a new selective oxidation catalyst. Catal. Today, 1993, 16, 263-271.

  • [6] Marshneva V.I., Mokrinskii V.V., Catalytic activity of metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide. Kinet. Catal., 1988, 29, 989-993.

  • [7] Davydov A.A., Marshneva V.I., Shepotko M.L., Metal oxides in hydrogen sulfide oxidation by oxygen and sulfur dioxide: I. The comparison study of the catalytic activity. Mechanism of the interactions between H2S and SO2 on some oxides. Applied Catal. A, Gen., 2003, 244, 93-100.

  • [8] Kalinkin P., Kovalenko O., Lapina O., Khabibulin D., Kundo N., Kinetic peculiarities in the low-temperature oxidation of H2S over vanadium catalysts. J. Mol. Catal. A, Chem., 2002, 178, 173-180.

  • [9] León M., Jiménez-Jiménez J., Jiménez-López A., Rodríguez- Castellón E., Soriano D., López Nieto J.M., Vanadium oxide-porous phosphate heterostructure catalysts for the selective oxidation of H2S to sulphur. Solid State Sci., 2010, 2, 996-1001.

  • [10] Palma V., Barba D., Low temperature catalytic oxidation of H2S over V2O5/CeO2 catalysts. Int. J. Hydrogen Energy, 2014, 39, 21524–21530.

  • [11] Bineesh V.K., Kim M.I., Lee G.H., Selvaraj M., Park D.W., Catalytic performance of vanadia-doped alumina-pillared clay for selective oxidation of H2S. Appl. Clay Sci., 2013, 74, 127-134.

  • [12] Kim M.I., Park D.W., Park S.W., Yang X., Choi J.S., Suh D.J., Selective oxidation of hydrogen sulfide containing excess water and ammonia over vanadia–titania aerogel catalysts. Catal. Today, 2006, 111, 212-216.

  • [13] Yasyerli S., Dogu G., Dogu T., Selective oxidation of H2S to elemental sulfur over Ce–V mixed oxide and CeO2 catalysts prepared by the complexation. Catal. Today, 2006, 117, 271-278.

  • [14] Soriano M.D., Lopez Nieto J.M., Ivars F., Concepcion P., Rodriguez-Castellon E., Alkali-promoted V2O5 catalysts for the partial oxidation of H2S to sulphur. Catal. Today, 2012, 192, 28-35.

  • [15] Balzhinimaev B.S., Paukshtis E.A., Vanag S.V., Suknev A.P., Zagoruiko A.N., Glass-fiber catalysts: Novel oxidation catalysts, catalytic technologies for environmental protection. Catal. Today, 2010, 151, 195-199.

  • [16] Zagoruiko A.N., Vanag S.V., Balzhinimaev B.S., Paukshtis E.A., Simonova L.G., Zykov A.M., Anichkov S.N., Hutson N.D., Catalytic flue gas conditioning in electrostatic precipitators of coal-fired powerplants. Chem. Eng. J., 2009, 154, 325-332.

  • [17] Zagoruiko A.N., Balzhinimaev B.S., Vanag S.V., Goncharov V.B., Lopatin SA, Zykov A.M., Anichkov S.N., Zhukov Y.N., Yankilevich V.M., Proskokov N.N., Hutson N.D., Novel catalytic process for flue gas conditioning in electrostatic precipitators of coal-fired power plants. J. Air Waste Manag. Assoc., 2010, 60, 1002-1008.

  • [18] Zagoruiko A.N., Lopatin S.A., Bal’zhinimaev B.S., Gil’mutdinov N.R., Sibagatullin G.G., Pogrebtsov V.P., Nazmieva I.F., The process for catalytic incineration of waste gas on IC-12-S102 platinum glass fiber catalyst. Catalysis in Industry, 2010, 2, 113-117.

  • [19] Zagoruiko A.N., Vanag S.V., Reverse‐flow reactor concept for combined SO2 and CO oxidation in smelter off‐gases. Chem. Eng. J., 2014, 238, 86-62.

  • [20] Vanag S.V., Paukshtis E.A., Zagoruiko A.N., Properties of platinum-containing glass-fiber catalysts in the SO2 oxidation reaction. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 147-158.

  • [21] Matatov-Meytal Y., Sheintuch M., Catalytic fibers and cloths. Appl. Catal. A, Gen., 2002, 231, 1-16.

  • [22] Reichelt E., Heddrich M.P., Jahn M., Michaelis A., Fiber based structured materials for catalytic applications. Appl Catal. A, Gen., 2014, 476, 78-90.

  • [23] Russian Patent for Utility model No 101652, 2010.

  • [24] Russian Patent for Utility model No 145037, 2014.

  • [25] Lopatin S.A., Zagoruiko A.N., Pressure drop of structured cartridges with fiber‐glass catalysts. Chem. Eng. J., 2014, 238, 31-36.

  • [26] Lopatin S.A., Mikenin P.E, Pisarev D.A., Baranov D.V., Zazhigalov S.V., Zagoruiko A.N., Pressure drop and mass transfer in the structured cartridges with fiber-glass catalyst. Chem. Eng. J., 2015, 282, 58-65.

  • [27] Mikenin P.E., Tsyrul’nikov P.G., Kotolevich Y.S., Zagoruiko A.N., Vanadium Oxide Catalysts on Structured Microfiber Supports for the Selective Oxidation of Hydrogen Sulfide. Catalysis in Industry, 2015, 2, 155-160.

  • [28] Kotolevich Y.S., Suprun E.A., Sharafutdinov M.R., Tsyrul’nikov P.G., Salanov A.N., Goncharov V.B., Influence of the fuel additive on the characteristics of silver catalysts produced by IST method at the glass-fiber supports. Russian Physics Journal, 2011, 12, 48-53.

  • [29] Afonasenko T.N., Tsyrul’nikov P.G., Gulyaeva T.I., Leont’eva N.N., Smirnova N.S., Kochubei D.I., Mironenko O.O., Svintsitskii D.A., Boronin A.I., Kotolevich Y.S., Suprun E.A., Salanov A.N., (CuO-CeO2)/glass cloth catalysts for selective CO oxidation in the presence of H2: The effect of the nature of the fuel component used in their surface self-propagating high-temperature synthesis on their properties. Kinet. Catal., 2013, 54, 59-68.

  • [30] Mironenko O.O., Shitova N.B., Kotolevich Y.S., Sharafutdinov M.R., Struikhina N.O., Smirnova N.S., Kochubey D.I., Protasova O.V., Trenikhin M.V., Stonkus O.A., Zaikovskii V.I., Goncharov V.B., Tsyrul’nikov P.G., Pd/fiber glass and Pd/5% γ-Al2O3/fiber glass catalysts by surface self-propagating thermal synthesis. International Journal of Self-Propagating High-Temperature Synthesis, 2012, 21, 139-145.

  • [31] Kotolevich Y.S., Khramov E.V., Mironenko O.O., Zubavichus Ya.V., Murzin V.Yu., Frey D.I., Metelev S.E., Shitova N.B., Tsyrulnikov P.G., Supported Palladium Catalysts Prepared by Surface Self-Propagating Thermal Synthesis. International Journal of Self-Propagating High-Temperature Synthesis, 2014, 23, 9-17.

  • [32] Desyatikh I.V., Vedyagin A.A., Kotolevich Y.S., Tsyrul’nikov P.G., Preparation of СuО - СeО2 catalysts deposited on glass cloth by surface self-propagating thermosynthesis method (SST). Combustion Explosion and Shock Waves, 2011, 47, 677-682.

  • [33] Russian Patent No 2 455 067, 2012.

  • [34] Russian Patent No 2 549 906, 2015.

  • [35] Darling R.B., Iwanaga S., Structure, properties, and MEMS and microelectronic applications of vanadium oxides. Sadhana, 2009, 34, 531-542.

  • [36] Ilyina E.V., Mishakov I.V., Vedyagin A.A., Cherepanova S.V., Nadeev A.N., Bedilo A.F., Klabunde K.J., Synthesis and characterization of mesoporous VOx/MgO aerogels with high surface area // Microporous. Microporous and Mesoporous Materials, 2012, 160, 32-40.

  • [37] Cherepanova S.V., Tsybulya S.V., Simulation of X-ray powder diffraction patterns for low-

  • [ordered materials. J. Mol. Catal., 2000, 158, 263-266.

  • [38] Catana G., Rao R.R., Weckhuysen B.M., Voort P.V.D., Vansant E., Schoonheydt R.A., J. Phys. Chem. B., 1998, 102, 8005-8012.

  • [39] Liu Y.M., Feng W.L., Li T.Ch., He H.Y., Dai W.L., Huang W., Cao Y., Fan K.N., J. Catal., 2006, 239, 125-136.

  • [40] El-Korso S., Rekkab I., Choukchou-Braham A., Bedrane S., Pirault-Roy L., Kappenstein C., Bull. Mater. Sci., 2012, 35, 1187-1194.

  • [41] Ilinskiy A.V., Kvashenkina O.E., Shadrin E.B., Semiconductors, 2012, 46, 422-429.

  • [42] Khodakov A., Olthof B., Bell A.T., Iglesia E., Structure and catalytic properties of supported vanadium oxides: support effects on oxidative dehydrogenation reactions. J. Catal., 1999, 181, 205-216.

  • [43] Argyle M.D., Chen K., Bell A.T., Iglesia E., E.Iglesia Effect of catalyst Structure on Dehydrogenation of Ethane and Propane on Alumina-Supported Vanadia. J. Catal., 2002, 208, 139-149.

  • [44] Bachman H.G., Achmed F.R., Barnes W.H., The crystal structure of vanadium pentoxide. Z.Kristallogr., 1961, 115, 110-131.

  • [45] Shklover V., Haibach T., Ried F., Nesper R., Crystal structure of the product of Mg(2+) insertion into V2O5 single crystals. J. Solid State Chem., 1996, 123, 317-323.

  • [46] Wei J., Ji H., Guo W., Nevidomskyy A.H., Natelson D., Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nature Nanotech Lett., 2012, 7, 357-362.


Journal + Issues