The Existence of a Unique Solution of the Hyperbolic Functional Differential Equation

Abstract

We consider the Z. Szmydt problem for the hyperbolic functional differential equation. We prove a theorem on existence of a unique classical solution and the Carathéodory solution of the hyperbolic equation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] E. Berkson, T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc. 30 (1984), 305-321.

  • [2] T. Człapinski, Hyperbolic functional differential equations, Gdansk, 1999.

  • [3] K. Deimling, A Carathéodory theory for systems of integral equations, Ann. Mat. Pura Appl. 86 (1970), 217-260.

  • [4] A. Karpowicz, The existence of Carathéodory solutions of hyperbolic functional differential equations, Discuss. Math. Differ. Incl. Control Optim. 30 (2010), 121-140.

  • [5] M. Krzyzanski, Partial Differential Equations of Second Order, Vol. 1, Warszawa, PWN, 1971.

  • [6] M. Krzyzanski, Partial Differential Equations of Second Order, Vol. 2, Warszawa, PWN, 1971.

  • [7] A. Lasota, Sur l’existence et l’unicité des solutions d’un probleme de Mlle Z. Szmydt relatif á l’équation de la corde vibrante en fonction de la position du point initial, Ann. Polon. Math. 9 (1960), 49-53.

  • [8] Z. Szmydt, Sur l’existence de solutions de certains nouveaux problemes pour un systeme d’équations différentielles hyperboliques du second ordre a deux variables indépendantes, Ann. Polon. Math. 4 (1957), 40-60.

  • [9] Z. Szmydt, Sur l’existence d’une solution unique de certains problemes pour un systeme d’équations différentielles hyperboliques du second ordre a deux variables indépendantes, Ann. Polon. Math. 4 (1957), 165-182.

Journal + Issues

The journal publishes research papers in various fields of mathematics, including algebra, analysis, approximation theory, differential equations, mathematical physics, dynamical systems and fractals, discrete mathematics, graph theory, probability theory, functional analysis and statistics.

Search