Montel–Type Theorems for Exponential Polynomials

J. M. Almira 1  and L. Székelyhidi 2
  • 1 DEPTO. MATEMÁTICAS. EPS LINARES UNIVERSIDAD DE JAÉN CAMPUS CIENTIFICO TECNOLÓGICO DE LINARES CINTURÓN SUR S/N 23700 LINARES (JAÉN), SPAIN
  • 2 INSTITUTE OF MATHEMATICS UNIVERSITY OF DEBRECEN EGYETEM TÉR 1 4032 DEBRECEN, HUNGARY DEPARTMENT OF MATHEMATICS UNIVERSITY OF BOTSWANA 4775 NOTWANE RD. GABORONE, BOTSWANA

Abstract

In this paper, we characterize local exponential monomials and polynomials on different types of Abelian groups and we prove Montel-type theorems for these function classes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] J. M. Almira, K. F. Abu-Helaiel, On Montel’s theorem in several variables, Carpathian J. Math. 31 (2015), 1-10.

  • [2] J. M. Almira, L. Székelyhidi, Local polynomials and the Montel theorem, Aequationes Math. 89(2) (2015), 329-338.

  • [3] P. M. Anselone, J. Korevaar, Translation invariant subspaces of finite dimension, Proc. Amer. Math. Soc. 15 (1964), 747-752.

  • [4] D. Z. Djokovic, A representation theorem for (X1 - 1)(X2 - 1) ··· (Xn - 1) and its applications, Ann. Polon. Math. 22 (1969/1970), 189-198.

  • [5] M. Lefranc, Analyse spectrale sur Zn, C. R. Acad. Sci. Paris 246 (1958), 1951-1953.

  • [6] L. Székelyhidi, Annihilator methods in discrete spectral synthesis, Acta Math. Hungar. 143(2) (2014), 351-366.

  • [7] L. Székelyhidi, A characterization of exponential polynomials, Publ. Math. Debrecen 83(4) (2013), 1-17.

  • [8] L. Székelyhidi, On Fréchet’s functional equation, Monatsch. Für Math. 175(4) (2014), 639-643.

  • [9] L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific, 1991.

  • [10] L. Székelyhidi, Polynomial functions and spectral synthesis, Aequationes Math. 70 (2005), 122-130.

  • [11] L. Székelyhidi, Discrete Spectral Synthesis and its Applications, Springer Monographs in Mathematics, Springer, Dordrecht, 2006.

  • [12] L. Székelyhidi, Noetherian rings of polynomial functions on Abelian groups, Aequationes Math. 84(1-2) (2012), 41-50.

  • [13] L. Székelyhidi, Exponential polynomials on commutative hypergroups, Arch. Math. 101(4) (2013), 341-347, to appear.

  • [14] L. Székelyhidi, Characterization of exponential polynomials on commutative hypergroups, Ann. Funct. Anal. 5(2) (2014), 53-60.

OPEN ACCESS

Journal + Issues

Demonstratio Mathematica, founded in 1969, is a fully peer-reviewed, open access journal that publishes original and significant research works and review articles devoted to functional analysis, approximation theory, and related topics. The journal provides the readers with free, instant, and permanent access to all content worldwide (all 53 volumes are available online!)

Search