degruyter.com uses cookies to store information that enables us to optimize our website and make browsing more comfortable for you. To learn more about the use of cookies, please read our Privacy Policy. OK

Copula-based dependence measures

Eckhard Liebscher 1
  • 1 University of Applied Sciences Merseburg, Department of Computer Science and Communication Systems, D-06217 Merseburg, Germany

Abstract

The aim of the present paper is to examine two wide classes of dependence coefficients including several well-known coefficients, for example Spearman’s ρ, Spearman’s footrule, and the Gini coefficient. There is a close relationship between the two classes: The second class is obtained by a symmetrisation of the coefficients in the former class. The coefficients of the first class describe the deviation from monotonically increasing dependence. The construction of the coefficients can be explained by geometric arguments. We introduce estimators of the dependence coefficients and prove their asymptotic normality.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Behboodian, J; Dolati, A.; Úbeda-Flores, M. (2007). A multivariate version of Gini’s rank association coeflcient. Statist. Papers 48, 295-304.

  • [2] Cifarelli, D.M.; Conti, P.L.; Regazzini, E. (1996). On the asymptotic distribution of a general measure of monotone dependence. Ann. Statist. 24, 1386-1399.

  • [3] Dolati, A.; Úbeda-Flores, M. (2006). On measures of multivariate concordance. J. Probab. Statist. Sci. 4, 147-163.

  • [4] Gaißer, S.; Ruppert, M.; Schmid, F. (2010). A multivariate version of Hoeffding’s Phi-Square. J. Multivariate Anal. 101, 2571- 2586.

  • [5] Genest, C.; Nešlehová, J.; Rémillard (2013). On the estimation of Spearman’s rho and related tests of independence for possibly discontinuous multivariate data. J. Multivariate Anal. 117, 214-228.

  • [6] Grothe, O.; Schmid, F.; Schnieders, J.; Segers, J. (2014). Measuring Association between Random Vectors. J. Multivariate Anal. 123, 96-110.

  • [7] Joe, H. (1990). Multivariate concordance. J. Multivariate Anal. 35, 12-30.

  • [8] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall.

  • [9] Nelsen, R.B. (2006). An Introduction to Copulas, Springer, Second Edition.

  • [10] Scarsini, M. (1984). On measures of concordance. Stochastica 8, 201-218.

  • [11] Schmid, F., Schmidt, R. (2007a). Multivariate extensions of Spearman’s rho and related statistics. Statist. Probab. Lett. 77, 407-416.

  • [12] Schmid, F., Schmidt, R. (2007b). Nonparametric inference onmultivariate versions of Blomqvist’s beta and relatedmeasures of tail dependence. Metrika 66, 323-354.

  • [13] Schmid, F.; Schmidt, R.; Blumentritt, T.; Gaißer, S.; Ruppert, M. (2010). Copula-based measures of multivariate association. in F. Durante, W. Härdle, P. Jaworski, T. Rychlik (eds.) Copula Theory and Its Applications. Springer Berlin, 2010.

  • [14] Schweizer, B.; Wolff, E.F. (1981). On nonparametric measures of dependence for random variables. Ann. Statist. 9, 879-885.

  • [15] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York.

  • [16] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris 8, 229-231.

  • [17] Taylor, M. D. (2007). Multivariate measures of concordance. Ann. Inst. Statist. Math. 59, 789-806.

  • [18] Úbeda-Flores, M. (2005). Multivariate versions of Blomqvist’s beta and Spearman’s footrule. Ann. lnst. Statist. Math. 57, 781-788.

  • [19] Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.

OPEN ACCESS

Journal + Issues

Dependence Modeling aims to provide a medium for exchanging results and ideas in the area of multivariate dependence modeling. Topics include Copula methods, environmental sciences, estimation and goodness-of-fit tests, extreme-value theory, limit laws, mass transportations, measures of association, multivariate distributions and tests, quantitative risk management, risk assessment, risk models, risk measures and stochastic orders and time series.

Search