Bregman superquantiles. Estimation methods and applications

T. Labopin-Richard 1 , F. Gamboa 2 , A. Garivier 2 , and B. Iooss 2
  • 1 Institut de Mathématiques de Toulouse (CNRS UMR 5219). Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
  • 2 FG AG and BI are with the Institut de Mathématiques de Toulouse (CNRS UMR 5219). Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France. BI is also with EDF R&D


In thiswork,we extend some parameters built on a probability distribution introduced before to the casewhere the proximity between real numbers is measured by using a Bregman divergence. This leads to the definition of the Bregman superquantile (thatwe can connect with severalworks in economy, see for example [18] or [9]). Axioms of a coherent measure of risk discussed previously (see [31] or [3]) are studied in the case of Bregman superquantile. Furthermore,we deal with asymptotic properties of aMonte Carlo estimator of the Bregman superquantile. Several numerical tests confirm the theoretical results and an application illustrates the potential interests of the Bregman superquantile.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Acerbi, C. and D. Tasche (2002). On the coherence of expected shortfall. J. Bank. Financ. 26(7), 1487-1503.

  • [2] Acerbi, C. (2002). Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Financ. 26(7), 1505-1518.

  • [3] Artzner, P., F. Delbaen, J.M. Eber, and D. Heath (2002). Coherent measures of risk. Math. Finance 9(3), 203-228.

  • [4] Bect, J., D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez (2012). Sequential design of computer experiments for the estimation of a probability of failure. Stat. Comput. 22(3), 773-793.

  • [5] Ben-Tal, A., A. Charnes, and M. Teboulle (1989). Entropic means. J. Math. Anal. Appl. 139(2), 537-551.

  • [6] Beutner E. and H. Zähle (2010). A modified functional delta method and its application to the estimation of risk functionals. J. Multivariate Anal. 101(10), 2452-2463.

  • [7] Bregman L. M. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. Math. 7(3), 200-217.

  • [8] Cannamela, C., J. Garnier and B. Iooss (2008). Controlled stratification for quantile estimation. Ann. Appl. Stat. 2(4), 1554- 1580.

  • [9] Chakravarty, S. (1988). Extended Gini indices of inequality. Internat. Econom. Rev. 29(1), 147-156.

  • [10] Chang, J.C and S.R. Hanna (2004). Air quality model performance evaluation. Meteor. Atmos. Phys. 87(1), 167-196.

  • [11] Chernoff, H. J.L. Gastwirth, and M.V. Johns (1967). Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Ann. Math. Stat. 38(1), 52-72.

  • [12] Chernozhukov, V. and L. Umantsev (2000). Conditional value-at-risk: Aspects of modeling and estimation. Empir. Econ. 26(1), 271-292.

  • [13] Chun, S.Y., A. Shapiro, and S. Uryasev (2011). Conditional value at risk and average value-at-risk : estimation and asymptotics. Oper. Res. 60(4), 739–756.

  • [14] Cont, R., R. Deguest and G. Scandolo (2010). Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance 10(6), 593-606.

  • [15] David, H.A. and H.N. Nagaraja (2003). Order Statistics. Wiley, Chichester.

  • [16] De Rocquigny, N., N. Devictor, and S. Tarantola (2008). Uncertainty in Industrial Practice. Wiley, Chichester.

  • [17] Devroye, L., L. Györfi, and G. Lugosi (2013). A probabilistic Theory of Pattern Recognition. Springer Verlag, New York.

  • [18] Furman, E. and R. Zitikis (2008). Weighted premium calculation principles. Insurance Math. Econom. 42(1), 459-465.

  • [19] Gneiting, T. and R. Ranjan (2012). Comparing density forecasts using threshold-and quantile-weighted scoring rules. J. Bus. Econom. Statist. 29(3), 411-422.

  • [20] Iooss, B. F. Van Dorpe, and N. Devictor (2006). Response surfaces and sensitivity analyses for an environmental model of dose calculations. Reliab. Eng. Syst. Safe. 91(10-11), 1241-1251.

  • [21] Jacques, J. C. Lavergne, and N. Devictor (2006). Sensitivity analysis in presence of model uncertainty and correlated inputs. Reliab. Eng. Syst. Safe. 91(10-11), 1126-1134.

  • [22] Jones, B.L., M.L. Puri, and R. Zitikis (2006). Testing hypotheses about the equality of several risk measure values with applications in insurance. Insurance Math. Econom. 38(2), 253-270.

  • [23] Jones, B.L. and R. Zitikis (2003). Empirical estimation of risk measures and related quantities. N. Am. Actuar. J. 7(4), 44-54.

  • [24] Jones, B.L. and R. Zitikis (2007). Risk measures, distortion parameters, and their empirical estimation. Insurance Math. Econom. 41(2), 279-297.

  • [25] Kuipers, L. and H. Niederreiter (1974). Uniform Distribution of Sequences. Wiley, Chichester.

  • [26] Kusuoka, S. (2001). On law invariant coherent risk measures. Adv. Math. Econ 3, 83-95.

  • [27] Pflug, G.C. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In Probabilistic Constrained Optimization, S. P. Uryasev editor, pp. 272-281. Springer US, Boston, MA.

  • [28] Pinelis, I. (2014). An optimal three-way stable and monotonic spectrum of bounds on quantiles: A spectrum of coherent measures of financial risk and economic inequality. Risks 2(3), 349-392.

  • [29] Rockafellar, R.T., J.O. Royset and S. I. Miranda (2014). Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk. European J. Oper. Res. 234(1), 140-154.

  • [30] Rockafellar, R.T. (1997). Convex analysis. Princeton University Press, Princeton, NJ.

  • [31] Rockafellar, R.T. (2007). Coherent approaches to risk in optimization under uncertainty. In 2007 Tutorials in Operations Research, T. Klastorin edito, pp. 38-61. INFORMS, Maryland.

  • [32] Rockafellar, R.T. and J.O. Royset (2012). Random variables, monotone relations and convex analysis. Technical report, DTIC Document. Available at rtr/papers/rtr226-Relations.pdf

  • [33] Rockafellar, R.T. and S. Uryasev (2013). The fundamental risk quadrangle in risk management, optimization and statistical estimation. Surv. Oper. Res. Manag. Sci. 18(1), 33-53.

  • [34] Uryasev, S., R.T. Rockafellar (2000). Optimization of conditional value-at-risk. J. Risk 2(3), 21-42.

  • [35] Song, Y. and J.A. Yan (2009). Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders. Insurance Math. Econom. 45(3), 459-465.

  • [36] Uryasev, S. (2000). Introduction to the theory of probabilistic functions and percentiles (Value–at–Risk). Probabilistic Constrained Optimization, S. P. Uryasev editor, pp. 1-25. Springer US, Boston, MA.

  • [37] Vaart, A.W.D.V. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.

  • [38] Wang, S. (1996). Premium calculation by transforming the layer premium density. Astin Bull. 26(1), 71-92.

  • [39] Wang, S. and J. Dhaene (1998). Comonotonicity, correlation order and premium principles. Insurance Math. Econom. 22(3), 235-242.

  • [40] Wang, S. (2000). A class of distortion operators for pricing financial and insurance risks. J. Risk Insur. 67(1), 15-36.

  • [41] Wirch, J.L. and M.R. Hardy (2002). Distortion risk measures. Coherence and stochastic dominance. Preprint

  • [42] Zähle, H. (2011). Rates of almost sure convergence of plug-in estimates for distortion risk measures. Metrika 74(2), 267-285.

  • [43] Ziegel, J.F. (2014). Coherence and elicitability. Math. Finance, in press. DOI: 10.1111/mafi.12080.


Journal + Issues