The world of vines

An interview with Claudia Czado

Christian Genest 1  and Matthias Scherer 2
  • 1 Department of Mathematics and Statistics, McGill University, Montréal, Canada
  • 2 Lehrstuhl für Finanzmathematik, Technische Universität München, , Garching, Germany

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009). Pair-copula constructions of multiple dependence. Insurance Math. Econom. 44(2), 182–198.

  • [2] Acar, E.F., C. Genest, and J. Nešlehová (2012). Beyond simplified pair-copula constructions. J. Multivariate Anal. 110, 74–90.

  • [3] Barthel, N., C. Geerdens, C. Czado, and P. Janssen (2019). Dependence modeling for recurrent event times subject to right-censoring with D-vine copulas. Biometrics, to appear. Available at

  • [4] Bauer, A., C. Czado, and T. Klein (2012). Pair-copula constructions for non-Gaussian DAG models. Canad. J. Statist. 40(1), 86–109.

  • [5] Bedford, T. and R.M. Cooke (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Ann. Math. Artif. Intell. 32(1–4), 245–268.

  • [6] Bedford, T. and R.M. Cooke (2002). Vines – a new graphical model for dependent random variables. Ann. Statist. 30(4), 1031–1068.

  • [7] Brechmann, E.C. and C. Czado (2013). Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50. Stat. Risk Model. 30(4), 307–342.

  • [8] Brechmann, E.C., C. Czado, and K. Aas (2012). Truncated regular vines in high dimensions with application to financial data. Canad. J. Statist. 40(1), 68–85.

  • [9] Czado, C. (1993). Norm restricted maximum likelihood estimators for binary regression models with parametric link. Comm. Statist. Theory Methods 22(8), 2259–2274.

  • [10] Czado, C. (1994). Parametric link modification of both tails in binary regression. Statist. Papers 35(1), 189–201.

  • [11] Czado, C. and A. Munk (1998). Assessing the similarity of distributions –finite sample performance of the empirical Mallows distance. J. Statist. Comput. Simulation 60(4), 319–346.

  • [12] Czado, C. and T.J. Santner (1992). The effect of link misspecification on binary regression inference. J. Statist. Plann. Inference 33(2), 213–231.

  • [13] Czado, C. and T.J. Santner (1992). Orthogonalizing parametric link transformation families in binary regression analysis. Canad. J. Statist. 20(1), 51–61.

  • [14] Dißmann, J., E.C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Comput. Statist. Data Anal. 59, 52–69.

  • [15] Erhardt, T.M., C. Czado, and U. Schepsmeier (2015). Spatial composite likelihood inference using local C-vines. J. Multivariate Anal. 138, 74–88.

  • [16] Gruber, L.F. and C. Czado (2018). Bayesian model selection of regular vine copulas. Bayesian Anal. 13(4), 1111–1135.

  • [17] Hanea, A.M., D. Kurowicka, and R.M. Cooke (2006). Hybrid method for quantifying and analyzing Bayesian belief nets. Qual. Reliab. Eng. Int. 22(6), 709–729.

  • [18] Jaworski, P., F. Durante, and W.K. Härdle (2013). Copulae in Mathematical and Quantitative Finance. Springer, Heidelberg.

  • [19] Joe, H. (2014). Dependence Modeling with Copulas. CRC Press, Boca Raton FL.

  • [20] Killiches, M. and C. Czado (2018). A D-vine copula based model for repeated measurements extending linear mixed models with homogeneous correlation structure. Biometrics 74(3), 997–1005.

  • [21] Killiches, M., D. Kraus, and C. Czado (2017). Examination and visualisation of the simplifying assumption for vine copulas in three dimensions. Aust. N. Z. J. Stat. 59(1), 95–117.

  • [22] Kraus, D. and C. Czado (2017). D-vine copula based quantile regression. Comput. Statist. Data Anal. 110, 1–18.

  • [23] Kraus, D. and C. Czado (2017). Growing simplified vine copula trees: improving Dißmann’s algorithm. Available at

  • [24] Kreuzer, A. and C. Czado (2019). E˛cient Bayesian inference for univariate and multivariate non linear state space models with univariate autoregressive state equation. Available at

  • [25] Kurowicka, D. and R.M. Cooke (2006). Uncertainty Analysis with High Dimensional Dependence Modelling. John Wiley & Sons, Chichester.

  • [26] Kurowicka, D. and R.M. Cooke (2007). Sampling algorithms for generating joint uniform distributions using the vine-copula method. Comput. Statist. Data Anal. 51(6), 2889–2906.

  • [27] Kurowicka, D. and H. Joe (2010). Dependence Modeling: Vine Copula Handbook. World Scientific Publishing, Singapore.

  • [28] Kurz, M.S. (2017). pacotest: Testing for Partial Copulas and the Simplifying Assumption in Vine Copulas. R package version 0.3.1. Available on CRAN.

  • [29] Kurz, M.S. and F. Spanhel (2017). Testing the simplifying assumption in high-dimensional vine copulas. Available at

  • [30] Min, A. and C. Czado (2010). Bayesian inference for multivariate copulas using pair-copula constructions. J. Financial Econom. 8(4), 511–546.

  • [31] Morales-Nápoles, O. (2010). Counting vines. In D. Kurowicka and H. Joe (Eds.), Dependence Modeling: Vine Copula Handbook, pp. 189–218. World Scientific Publishing, Singapore.

  • [32] Müller, D. and C. Czado (2018). Representing sparse Gaussian DAGs as sparse R-vines allowing for non-Gaussian dependence. J. Comput. Graph. Statist. 27(2), 334–344.

  • [33] Müller, D. and C. Czado (2019). Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso. Comput. Statist. Data Anal. 137, 211–232.

  • [34] Munk, A. and C. Czado (1998). Nonparametric validation of similar distributions and assessment of goodness of fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 60(1), 223–241.

  • [35] Nagler, T. (2017). kdevine: Multivariate Kernel Density Estimation with Vine Copulas. R package version 0.4.2. Available on CRAN.

  • [36] Nagler, T. and C. Czado (2016). Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas. J. Multivariate Anal. 151, 69–89.

  • [37] Nagler, T. and D. Kraus (2017). vinereg: D-Vine Quantile Regression. R package version 0.2.0.

  • [38] Nagler, T., C. Schellhase, and C. Czado (2017). Nonparametric estimation of simplified vine copula models: comparison of methods. Depend. Model. 5, 99–120.

  • [39] Newton, M.A., C. Czado, and R. Chappell (1996). Bayesian inference for semiparametric binary regression. J. Amer. Statist. Assoc. 91(433), 142–153.

  • [40] Panagiotelis, A., C. Czado, and H. Joe (2012). Pair copula constructions for multivariate discrete data. J. Amer. Statist. Assoc. 107(499), 1063–1072.

  • [41] Schallhorn, N., D. Kraus, T. Nagler, and C. Czado (2017). D-vine quantile regression with discrete variables. Available at

  • [42] Schellhase, C. (2017). pencopulaCond: Estimating Non-Simplified Vine Copulas Using Penalized Splines. R package version 0.2. Available on CRAN.

  • [43] Schellhase, C. (2017). penRvine: Flexible R-Vines Estimation Using Bivariate Penalized Splines. R package version 0.2. Available on CRAN.

  • [44] Schellhase, C. and F. Spanhel (2018). Estimating non-simplified vine copulas using penalized splines. Stat. Comput. 28(2), 387–409.

  • [45] Schepsmeier, U., J. Stöber, E.C. Brechmann, B. Gräler, T. Nagler, and T. Erhardt et al. (2018). VineCopula: Statistical Inference of Vine Copulas. R package version 2.1.8. Available on CRAN.

  • [46] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231.

  • [47] Stöber, J. and C. Czado (2014). Regime switches in the dependence structure of multidimensional financial data. Comput. Statist. Data Anal. 76, 672–686.

  • [48] Stöber, J., H.G. Hong, C. Czado, and P. Ghosh (2015). Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses. Comput. Statist. Data Anal. 88, 28–39.

  • [49] Taqqu, M.S. and C. Czado (1985). A survey of functional laws of the iterated logarithm for self-similar processes. Comm. Statist. Stochastic Models 1(1), 77–115.

  • [50] Vatter, T. and T. Nagler (2018). Generalized additive models for pair-copula constructions. J. Comput. Graph. Statist. 27(4), 715–727.


Journal + Issues

Dependence Modeling aims to provide a medium for exchanging results and ideas in the area of multivariate dependence modeling. Topics include Copula methods, environmental sciences, estimation and goodness-of-fit tests, extreme-value theory, limit laws, mass transportations, measures of association, multivariate distributions and tests, quantitative risk management, risk assessment, risk models, risk measures and stochastic orders and time series.