The unfolded protein response, inflammation, oscillators, and disease: a systems biology approach

Rafael Rangel-Aldao 1
  • 1 Department of Technology of Biological Processes and Group of Digital Science, Simon Bolivar University, 1083, Venezuela, Caracas

Abstract

Non-communicable diseases (NCDs) such as cardiovascular disease, cancers, diabetes and obesity are responsible for about two thirds of mortality worldwide, and all of these ailments share a common low-intensity systemic chronic inflammation, endoplasmic reticulum stress (ER stress), and the ensuing Unfolded Protein Response (UPR). These adaptive mechanisms are also responsible for significant metabolic changes that feedback with the central clock of the suprachiasmatic nucleus (SCN) of the hypothalamus, as well as with oscillators of peripheral tissues. In this review we attempt to use a systems biology approach to explore such interactions as a whole; to answer two fundamental questions: (1) how dependent are these adaptive responses and subsequent events leading to NCD with their state of synchrony with the SCN and peripheral oscillators? And, (2) How could modifiers of the activity of SCN for instance, food intake, exercise, and drugs, be potentially used to modulate systemic inflammation and ER stress to ameliorate or even prevent NCDs?

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-128.

  • [2] Ezzati M, Riboli E. Can noncommunicable diseases be prevented? Lessons from studies of populations and individuals. Science. 2012;337(6101):1482-7.

  • [3] Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nature reviews Cancer. 2011;11(12):886-95.

  • [4] Zhou X, Menche J, Barabasi AL, Sharma A. Human symptomsdisease network. Nature communications. 2014;5:4212.

  • [5] Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabasi AL. The human disease network. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(21):8685-90.

  • [6] Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900-17.

  • [7] Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circulation research. 2012;110(1):174-89.

  • [8] Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-7.

  • [9] Eckel-Mahan K, Sassone-Corsi P. Metabolism and the Circadian Clock Converge. Physiological reviews. 2013;93(1):107-35.

  • [10] Shi M, Zheng X. Interactions between the circadian clock and metabolism: there are good times and bad times. Acta biochimica et biophysica Sinica. 2013;45(1):61-9.

  • [11] Goldbeter A, Gerard C, Gonze D, Leloup JC, Dupont G. Systems biology of cellular rhythms. FEBS Lett. 2012;586(18):2955-65.

  • [12] Mattu HS, Randeva HS. Role of adipokines in cardiovascular disease. The Journal of endocrinology. 2013;216(1):T17-36.

  • [13] Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012;481(7381):278-86.

  • [14] Brennan MD, Cheong R, Levchenko A. Systems biology. How information theory handles cell signaling and uncertainty. Science. 2012;338(6105):334-5.

  • [15] Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A. Information transduction capacity of noisy biochemical signaling networks. Science. 2011;334(6054):354-8.

  • [16] Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338(6103):120-3.

  • [17] Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081-6.

  • [18] Maury E, Ramsey KM, Bass J. Circadian rhythms and metabolic syndrome: from experimental genetics to human disease. Circulation research. 2010;106(3):447-62.

  • [19] Khera A, de Lemos JA, Peshock RM, Lo HS, Stanek HG, Murphy SA, et al. Relationship between C-reactive protein and subclinical atherosclerosis: the Dallas Heart Study. Circulation. 2006;113(1):38-43.

  • [20] Packard RR, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clinical chemistry. 2008;54(1):24-38.

  • [21] Hauner H, Bechthold A, Boeing H, Bronstrup A, Buyken A, Leschik-Bonnet E, et al. Evidence-based guideline of the German Nutrition Society: carbohydrate intake and prevention of nutrition-related diseases. Annals of nutrition & metabolism. 2012;60 Suppl 1:1-58.

  • [22] WHO Report.pdf.

  • [23] Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annual review of neuroscience. 2012;35:445-62.

  • [24] Kwon I, Choe HK, Son GH, Kim K. Mammalian molecular clocks. Experimental neurobiology. 2011;20(1):18-28.

  • [25] Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiological reviews. 2010;90(3):1063-102.

  • [26] Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428-35.

  • [27] Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91.

  • [28] Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annual review of immunology. 2011;29:415-45.

  • [29] Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of clinical investigation. 2006;116(6):1494-505.

  • [30] Hume DA. The mononuclear phagocyte system. Current opinion in immunology. 2006;18(1):49-53.

  • [31] Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. American journal of physiology Heart and circulatory physiology. 2005;288(5):H2031-41.

  • [32] Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161-6.

  • [33] Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397-411.

  • [34] Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and immunity. 2005;73(4):1907-16.

  • [35] Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arteriosclerosis, thrombosis, and vascular biology. 1999;19(4):972-8.

  • [36] Ridker PM, Buring JE, Cook NR, Rifai N. C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation. 2003;107(3):391-7.

  • [37] C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction. New England Journal of Medicine. 2012;367(14):1310-20.

  • [38] Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436-44.

  • [39] Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124(4):823-35.

  • [40] Atsumi T, Singh R, Sabharwal L, Bando H, Meng J, Arima Y, et al. Molecular Pathogenesis of Colorectal Cancer

  • [Inflammation Amplifier, a New Paradigm in Cancer Biology. Anticancer Res. 2014;34(2):1065-b-.

  • [41] Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-99.

  • [42] Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137-48.

  • [43] Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis. 2014;35(2):249-55.

  • [44] Gallimore AM, Phil, D., Godkin, A. Epithelial Barriers, Microbiota, and Colorectal Cancer. New England Journal of Medicine. 2013.

  • [45] Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science. 2013;341(6150):1241214-.

  • [46] Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499(7456):97-101.

  • [47] Winter SE, Lopez CA, Baumler AJ. The dynamics of gut-associated microbial communities during inflammation. EMBO reports. 2013;14(4):319-27.

  • [48] Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14.

  • [49] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-63.

  • [50] Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222-7.

  • [51] O’Toole PW, Claesson MJ. Gut microbiota: Changes throughout the lifespan from infancy to elderly. International Dairy Journal. 2010;20(4):281-91.

  • [52] Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS biology. 2008;6(11):e280.

  • [53] Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, et al. Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting. PloS one. 2011;6(12):e28654.

  • [54] Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342(6161):971-6.

  • [55] Nicholson JK, Holmes E, Lindon JC, Wilson ID. The challenges of modeling mammalian biocomplexity. Nature biotechnology. 2004;22(10):1268-74.

  • [56] Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258-70.

  • [57] Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(31):11070-5.

  • [58] Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60.

  • [59] Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451-5.

  • [60] Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-6.

  • [61] Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049-57.

  • [62] Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-50.

  • [63] Nemazee D. Receptor editing in lymphocyte development and central tolerance. Nat Rev Immunol. 2006;6(10):728-40.

  • [64] Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 2013;501(7465):112-5.

  • [65] Kostic AD, Chun E, Meyerson M, Garrett WS. Microbes and inflammation in colorectal cancer. Cancer immunology research. 2013;1(3):150-7.

  • [66] Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311-5.

  • [67] De Vries AC, Van Driel HF, Richardus JH, Ouwendijk M, Van Vuuren AJ, De Man RA, et al. Migrant communities constitute a possible target population for primary prevention of Helicobacter pylori-related complications in low incidence countries. Scandinavian journal of gastroenterology. 2008;43(4):403-9.

  • [68] Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254-8.

  • [69] Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(22):9238-43.

  • [70] Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. Journal of lipid research. 2006;47(2):241-59.

  • [71] Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80.

  • [72] Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59-65.

  • [73] Zhang K. Integration of ER stress, oxidative stress and the inflammatory response in health and disease. International journal of clinical and experimental medicine. 2010;3(1):33-40.

  • [74] Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes & development. 1999;13(10):1211-33.

  • [75] Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006;124(3):587-99.

  • [76] Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, et al. The endoplasmic reticulum is the site of cholesterol induced cytotoxicity in macrophages. Nature cell biology. 2003;5(9):781-92.

  • [77] Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. American journal of physiology Endocrinology and metabolism. 2006;291(2):E275-81.

  • [78] Scheuner D, Vander Mierde D, Song B, Flamez D, Creemers JW, Tsukamoto K, et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nature medicine. 2005;11(7):757-64.

  • [79] Rath E, Haller D. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. European journal of nutrition. 2011;50(4):219-33.

  • [80] Dong Y, Zhang M, Wang S, Liang B, Zhao Z, Liu C, et al. Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo. Diabetes. 2010;59(6):1386-96.

  • [81] Khan MI, Pichna BA, Shi Y, Bowes AJ, Werstuck GH. Evidence supporting a role for endoplasmic reticulum stress in the development of atherosclerosis in a hyperglycaemic mouse model. Antioxidants & redox signaling. 2009;11(9):2289-98.

  • [82] Zhou J, Austin RC. Contributions of hyperhomocysteinemia to atherosclerosis: Causal relationship and potential mechanisms. BioFactors (Oxford, England). 2009;35(2):120-9.

  • [83] Hossain GS, van Thienen JV, Werstuck GH, Zhou J, Sood SK, Dickhout JG, et al. TDAG51 is induced by homocysteine, promotes detachment-mediated programmed cell death, and contributes to the cevelopment of atherosclerosis in hyperhomocysteinemia. The Journal of biological chemistry. 2003;278(32):30317-27.

  • [84] Tabas I. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circulation research. 2010;107(7):839-50.

  • [85] Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10(1):36-46.

  • [86] Hotamisligil GS. Endoplasmic reticulum stress and atherosclerosis. Nature medicine. 2010;16(4):396-9.

  • [87] Lee AH, Glimcher LH. Intersection of the unfolded protein response and hepatic lipid metabolism. Cellular and molecular life sciences : CMLS. 2009;66(17):2835-50.

  • [88] Spiotto MT, Banh A, Papandreou I, Cao H, Galvez MG, Gurtner GC, et al. Imaging the unfolded protein response in primary tumors reveals microenvironments with metabolic variations that predict tumor growth. Cancer research. 2010;70(1):78-88.

  • [89] Mahadevan NR, Zanetti M. Tumor stress inside out: cell-extrinsic effects of the unfolded protein response in tumor cells modulate the immunological landscape of the tumor microenvironment. Journal of immunology (Baltimore, Md : 1950). 2011;187(9):4403-9.

  • [90] VANDEWYNCKEL Y-P, LAUKENS D, GEERTS A, BOGAERTS E, PARIDAENS A, VERHELST X, et al. The Paradox of the Unfolded Protein Response in Cancer. Anticancer Res. 2013;33(11):4683-94.

  • [91] Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the homeostatic unfolded protein response. The Journal of cell biology. 2010;189(5):783-94.

  • [92] Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature reviews Molecular cell biology. 2012;13(2):89-102.

  • [93] Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, Tremblay LO, Herscovics A, et al. A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO reports. 2001;2(5):415-22.

  • [94] Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell death and differentiation. 2004;11(4):381-9.

  • [95] Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science. 2011;332(6025):91-4.

  • [96] Harding HP, Zhang Y, Scheuner D, Chen JJ, Kaufman RJ, Ron D. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(6):1832-7.

  • [97] Chawla A, Chakrabarti S, Ghosh G, Niwa M. Attenuation of yeast UPR is essential for survival and is mediated by IRE1 kinase. The Journal of cell biology. 2011;193(1):41-50.

  • [98] Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, et al. The unfolded protein response signals through high-order assembly of Ire1. Nature. 2009;457(7230):687-93.

  • [99] Reimold AM, Iwakoshi NN, Manis J, Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese EM, et al. Plasma cell differentiation requires the transcription factor XBP-1. Nature. 2001;412(6844):300-7.

  • [100] Prischi F, Nowak PR, Carrara M, Ali MMU. Phosphoregulation of Ire1 RNase splicing activity. Nature communications. 2014;5.

  • [101] Schindler AJ, Schekman R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(42):17775-80.

  • [102] Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular biology of the cell. 1999;10(11):3787-99.

  • [103] Little E, Ramakrishnan M, Roy B, Gazit G, Lee AS. The glucoseregulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Critical reviews in eukaryotic gene expression. 1994;4(1):1-18.

  • [104] Sela D, Chen L, Martin-Brown S, Washburn MP, Florens L, Conaway JW, et al. Endoplasmic Reticulum Stress-responsive Transcription Factor ATF6{alpha} Directs Recruitment of the Mediator of RNA Polymerase II Transcription and Multiple Histone Acetyltransferase Complexes. J Biol Chem. 2012;287(27):23035-45.

  • [105] Schram AW, Baas R, Jansen PW, Riss A, Tora L, Vermeulen M, et al. A dual role for SAGA-associated factor 29 (SGF29) in ER stress survival by coordination of both histone H3 acetylation and histone H3 lysine-4 trimethylation. PloS one. 2013;8(7):e70035.

  • [106] Nagy Z, Riss A, Fujiyama S, Krebs A, Orpinell M, Jansen P, et al. The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes. Cellular and molecular life sciences : CMLS. 2010;67(4):611-28.

  • [107] Hiramatsu N, Messah C, Han J, LaVail MM, Kaufman RJ, Lin JH. Translational and posttranslational regulation of XIAP by eIF2{alpha} and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell. 2014;25(9):1411-20.

  • [108] Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116(2):205-19.

  • [109] Salvesen GS, Ashkenazi A. Snapshot: caspases. Cell. 2011;147(2):476-.e1.

  • [110] Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin. 2014;46(8):629-40.

  • [111] Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nature cell biology. 2013;15(5):481-90.

  • [112] Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, et al. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science. 2012;338(6108):818-22.

  • [113] Sandow JJ, Dorstyn L, O’Reilly LA, Tailler M, Kumar S, Strasser A, et al. ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis. Cell death and differentiation. 2014;21(3):475-80.

  • [114] Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science. 2014;345(6192):98-101.

  • [115] Yamauchi Y, Riel JM, Stoytcheva Z, Ward MA. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science. 2014;343(6166):69-72.

  • [116] Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Developmental cell. 2007;13(3):351-64.

  • [117] Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature reviews Drug discovery. 2008;7(12):1013-30.

  • [118] Morishima N, Nakanishi K, Nakano A. Activating transcription factor-6 (ATF6) mediates apoptosis with reduction of myeloid cell leukemia sequence 1 (Mcl-1) protein via induction of WW domain binding protein 1. The Journal of biological chemistry. 2011;286(40):35227-35.

  • [119] Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Human molecular genetics. 2006;15(suppl 2):R271-R7.

  • [120] Pluquet O, Dejeans N, Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann Med. 2014;46(4):233-43.

  • [121] Yang X. A wheel of time: the circadian clock, nuclear receptors, and physiology. Genes & development. 2010;24(8):741-7.

  • [122] Gritton HJ, Stasiak AM, Sarter M, Lee TM. Cognitive performance as a zeitgeber: cognitive oscillators and cholinergic modulation of the SCN entrain circadian rhythms. PloS one. 2013;8(2):e56206.

  • [123] Bass J. Circadian topology of metabolism. Nature. 2012;491(7424):348-56.

  • [124] Menet JS, Pescatore S, Rosbash M. CLOCK:BMAL1 is a pioneer-like transcription factor. Genes & development. 2014;28(1):8-13.

  • [125] Zhao X, Cho H, Yu RT, Atkins AR, Downes M, Evans RM. Nuclear receptors rock around the clock. EMBO reports. 2014;15(5):518-28.

  • [126] Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature. 2007;447(7143):477-81.

  • [127] Yin L, Wang J, Klein PS, Lazar MA. Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science. 2006;311(5763):1002-5.

  • [128] Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature. 2012;485(7396):123-7.

  • [129] Stubblefield JJ, Terrien J, Green CB. Nocturnin: at the crossroads of clocks and metabolism. Trends in Endocrinology & Metabolism. 2012;23(7):326-33.

  • [130] Kawai M, Green CB, Lecka-Czernik B, Douris N, Gilbert MR, Kojima S, et al. A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-γ nuclear translocation. Proceedings of the National Academy of Sciences. 2010;107(23):10508-13.

  • [131] Misra J, Kim D-K, Choi W, Koo S-H, Lee C-H, Back S-H, et al. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response. Nucleic acids research. 2013;41(14):6960-74.

  • [132] Kim DK, Ryu D, Koh M, Lee MW, Lim D, Kim MJ, et al. Orphan nuclear receptor estrogen-related receptor gamma (ERRgamma) is key regulator of hepatic gluconeogenesis. The Journal of biological chemistry. 2012;287(26):21628-39.

  • [133] Koyanagi S, Hamdan AM, Horiguchi M, Kusunose N, Okamoto A, Matsunaga N, et al. cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene. The Journal of biological chemistry. 2011;286(37):32416-23.

  • [134] Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell metabolism. 2010;11(1):47-57.

  • [135] Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448-60.

  • [136] McBurney MW, Clark-Knowles KV, Caron AZ, Gray DA. SIRT1 is a Highly Networked Protein That Mediates the Adaptation to Chronic Physiological Stress. Genes & cancer. 2013;4(3- 4):125-34.

  • [137] Li X. SIRT1 and energy metabolism. Acta biochimica et biophysica Sinica. 2013;45(1):51-60.

  • [138] Wang FM, Chen YJ, Ouyang HJ. Regulation of unfolded protein response modulator XBP1s by acetylation and deacetylation. The Biochemical journal. 2011;433(1):245-52.

  • [139] Li Y, Xu S, Giles A, Nakamura K, Lee JW, Hou X, et al. Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2011;25(5):1664-79.

  • [140] Gachon F, Bonnefont X. Circadian clock-coordinated hepatic lipid metabolism: only transcriptional regulation? Aging (Albany NY). 2010;2(2):101-6.

  • [141] Hoffmann A, Levchenko A, Scott ML, Baltimore D. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002;298(5596):1241-5.

  • [142] Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, et al. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science. 2004;306(5696):704-8.

  • [143] Lee JH, Sancar A. Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(29):12036-41.

  • [144] Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annual review of immunology. 1998;16:225-60.

  • [145] Hoffmann A, Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunological reviews. 2006;210:171-86.

  • [146] Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harbor perspectives in biology. 2010;2(3):a000158.

  • [147] Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M, Ogata R, et al. Activation of the Akt-NF-kappaB pathway by subtilase cytotoxin through the ATF6 branch of the unfolded protein response. Journal of immunology (Baltimore, Md : 1950). 2009;183(2):1480-7.

  • [148] Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Molecular and cellular biology. 2006;26(8):3071-84.

  • [149] Mei Y, Thompson MD, Cohen RA, Tong X. Endoplasmic Reticulum Stress and Related Pathological Processes. Journal of pharmacological & biomedical analysis. 2013;1(2):1000107.

  • [150] Wang Y, Paszek P, Horton CA, Yue H, White MRH, Kell DB, et al. A systematic survey of the response of a model NF- signalling pathway to stimulation. Journal of Theoretical Biology. 2012;297(0):137-47.

  • [151] Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature. 2010;466(7303):267-71.

  • [152] Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, et al. Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science. 2009;324(5924):242-6.

  • [153] Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, et al. Core circadian protein CLOCK is a positive regulator of NF-kappaBmediated transcription. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(37):E2457-65.

  • [154] Bellet MM, Zocchi L, Sassone-Corsi P. The RelB subunit of NFkappaB acts as a negative regulator of circadian gene expression. Cell cycle (Georgetown, Tex). 2012;11(17):3304-11.

  • [155] Palomer X, Alvarez-Guardia D, Rodriguez-Calvo R, Coll T, Laguna JC, Davidson MM, et al. TNF-alpha reduces PGC-1alpha expression through NF-kappaB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model. Cardiovascular research. 2009;81(4):703-12.

  • [156] Cooks T, Harris CC, Oren M. Caught in the cross fire: p53 in inflammation. Carcinogenesis. 2014;35(8):1680-90.

  • [157] Dioufa N, Chatzistamou I, Farmaki E, Papavassiliou AG, Kiaris H. p53 antagonizes the unfolded protein response and inhibits ground glass hepatocyte development during endoplasmic reticulum stress. Experimental biology and medicine (Maywood, NJ). 2012;237(10):1173-80.

  • [158] Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A, Dekel E, et al. Oscillations and variability in the p53 system. Molecular systems biology. 2006;2:2006 0033.

  • [159] Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G. p53 dynamics control cell fate. Science. 2012;336(6087):1440-4.

  • [160] Miki T, Matsumoto T, Zhao Z, Lee CC. p53 regulates Period2 expression and the circadian clock. Nature communications. 2013;4:2444.

  • [161] Stavridi ES, Halazonetis TD. p53 and stress in the ER. Genes & development. 2004;18(3):241-4.

  • [162] Qu L, Huang S, Baltzis D, Rivas-Estilla AM, Pluquet O, Hatzoglou M, et al. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase- 3beta. Genes & development. 2004;18(3):261-77.

  • [163] Hamstra DA, Bhojani MS, Griffin LB, Laxman B, Ross BD, Rehemtulla A. Real-time evaluation of p53 oscillatory behavior in vivo using bioluminescent imaging. Cancer research. 2006;66(15):7482-9.

  • [164] Wang Y, Paszek P, Horton CA, Kell DB, White MR, Broomhead DS, et al. Interactions among oscillatory pathways in NF-kappa B signaling. BMC systems biology. 2011;5:23.

  • [165] Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta biochimica et biophysica Sinica. 2011;43(4):248-57.

  • [166] Igarashi T, Izumi H, Uchiumi T, Nishio K, Arao T, Tanabe M, et al. Clock and ATF4 transcription system regulates drug resistance in human cancer cell lines. Oncogene. 2007;26(33):4749-60.

  • [167] Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell metabolism. 2011;13(2):125-37.

  • [168] Kohyama J. The possible long-term effects of early-life circadian rhythm disturbance on social behavior. Expert review of neurotherapeutics. 2014;14(7):745-55.

  • [169] Guarente L. Calorie restriction and sirtuins revisited. Genes & development. 2013;27(19):2072-85.

  • [170] Wu X, Xin Z, Zhang W, Zheng S, Wu J, Chen K, et al. A missense polymorphism in ATF6 gene is associated with susceptibility to hepatocellular carcinoma probably by altering ATF6 level. International journal of cancer Journal international du cancer. 2014;135(1):61-8.

  • [171] Peng J, Chen YY, Yang LX, Zhao XY, Gao ZQ, Yang J, et al. XBP1 promoter polymorphism modulates platinum-based chemotherapy gastrointestinal toxicity for advanced non-small cell lung cancer patients. Lung cancer (Amsterdam, Netherlands). 2013;80(3):333-8.

  • [172] Andersen V, Christensen J, Overvad K, Tjonneland A, Vogel U. Polymorphisms in NFkB, PXR, LXR and risk of colorectal cancer in a prospective study of Danes. BMC cancer. 2010;10:484.

  • [173] Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nature reviews Cancer. 2009;9(2):95-107.

  • [174] Shimoyama Y, Mitsuda Y, Tsuruta Y, Suzuki K, Hamajima N, Niwa T. SIRTUIN 1 gene polymorphisms are associated with cholesterol metabolism and coronary artery calcification in Japanese hemodialysis patients. Journal of renal nutrition : the official journal of the Council on Renal Nutrition of the National Kidney Foundation. 2012;22(1):114-9.

  • [175] Kim E, Lee SH, Lee KS, Cheong HK, Namkoong K, Hong CH, et al. AMPK gamma2 subunit gene PRKAG2 polymorphism associated with cognitive impairment as well as diabetes in old age. Psychoneuroendocrinology. 2012;37(3):358-65.

  • [176] Santos DG, Resende MF, Mill JG, Mansur AJ, Krieger JE, Pereira AC. Nuclear Factor (NF) kappaB polymorphism is associated with heart function in patients with heart failure. BMC medical genetics. 2010;11:89.

  • [177] Rouzier R, Pronzato P, Chereau E, Carlson J, Hunt B, Valentine WJ. Multigene assays and molecular markers in breast cancer: systematic review of health economic analyses. Breast cancer research and treatment. 2013;139(3):621-37.

  • [178] Hunerdosse D, Nomura DK. Activity-based proteomic and metabolomic approaches for understanding metabolism. Current opinion in biotechnology. 2014;28:116-26.

  • [179] Loke YK, Kwok CS, Singh S. Comparative cardiovascular effects of thiazolidinediones: systematic review and meta-analysis of observational studies. Bmj. 2011;342:d1309.

  • [180] Verschuren L, Wielinga PY, Kelder T, Radonjic M, Salic K, Kleemann R, et al. A systems biology approach to understand the pathophysiological mechanisms of cardiac pathological hypertrophy associated with rosiglitazone. BMC medical genomics. 2014;7:35.

  • [181] Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013;339(6116):166-72.

  • [182] Xiao S, Fei N, Pang X, Shen J, Wang L, Zhang B, et al. A gut microbiota-targeted dietary intervention for amelioration of chronic inflammation underlying metabolic syndrome. FEMS Microbiology Ecology. 2014;87(2):357-67.

  • [183] Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, et al. Circadian disorganization alters intestinal microbiota. PloS one. 2014;9(5):e97500.

  • [184] Henao-Mejia J, Strowig T, Flavell RA. Microbiota keep the intestinal clock ticking. Cell. 2013;153(4):741-3.

OPEN ACCESS

Journal + Issues

Search