Genesis of ER Stress in Huntington’s Disease

Marina Shenkman 1 , 2 , Hagit Eiger 1 , 2 , and Gerardo Z. Lederkremer 1 , 2
  • 1 Department of Cell Research and Immunology, George Wise Faculty of Life sciences, Tel Aviv University, 69978, Tel Aviv, Israel
  • 2 Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel

Abstract

Recent research has identified ER stress as a major mechanism implicated in cytotoxicity in many neurodegenerative diseases, among them Huntington’s disease. This genetic disorder is of late-onset, progressive and fatal, affecting cognition and movement. There is presently no cure nor any effective therapy for the disease. This review focuses on recent findings that shed light on the mechanisms of the advent and development of ER stress in Huntington’s disease and on its implications, highlighting possible therapeutic avenues that are being or could be explored.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Pennuto, M., Palazzolo, I., and Poletti, A., Post-translational modifications of expanded polyglutamine proteins: impact on neurotoxicity, Hum Mol Genet, 2009; 18(R1): R40-47.

  • [2] Shao, J., and Diamond, M.I., Polyglutamine diseases: emerging concepts in pathogenesis and therapy, Hum Mol Genet, 2007; 16 Spec No. 2: R115-123.

  • [3] Hatters, D.M., Putting huntingtin “aggregation” in view with windows into the cellular milieu, Current topics in medicinal chemistry, 2012; 12(22): 2611-2622.

  • [4] Sakahira, H., Breuer, P., Hayer-Hartl, M.K., and Hartl, F.U., Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity, Proc Natl Acad Sci U S A, 2002; 99 Suppl 4: 16412-16418.

  • [5] Lajoie, P., and Snapp, E.L., Formation and toxicity of soluble polyglutamine oligomers in living cells, PLoS One, 2010; 5(12): e15245.

  • [6] Schaffar, G., Breuer, P., Boteva, R., Behrends, C., Tzvetkov, N., Strippel, N., Sakahira, H., Siegers, K., Hayer-Hartl, M., and Hartl, F.U., Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation, Mol Cell, 2004; 15(1): 95-105.

  • [7] Takahashi, T., Kikuchi, S., Katada, S., Nagai, Y., Nishizawa, M., and Onodera, O., Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic, Hum Mol Genet, 2008; 17(3): 345-356.

  • [8] Leitman, J., Ulrich Hartl, F., and Lederkremer, G.Z., Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress, Nat Commun, 2013; 4: 2753.

  • [9] Ochaba, J., Lukacsovich, T., Csikos, G., Zheng, S., Margulis, J., Salazar, L., Mao, K., Lau, A.L., Yeung, S.Y., Humbert, S., et al., Potential function for the Huntingtin protein as a scaffold for selective autophagy, Proc Natl Acad Sci U S A, 2014; 111(47): 16889-16894.

  • [10] Rui, Y.N., Xu, Z., Patel, B., Chen, Z., Chen, D., Tito, A., David, G., Sun, Y., Stimming, E.F., Bellen, H.J., et al., Huntingtin functions as a scaffold for selective macroautophagy, Nat Cell Biol, 2015; 17(3): 262-275.

  • [11] Lee, J.H., Tecedor, L., Chen, Y.H., Monteys, A.M., Sowada, M.J., Thompson, L.M., and Davidson, B.L., Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotypes, Neuron, 2015; 85(2): 303-315.

  • [12] Imarisio, S., Carmichael, J., Korolchuk, V., Chen, C.W., Saiki, S., Rose, C., Krishna, G., Davies, J.E., Ttofi, E., Underwood, B.R., et al., Huntington’s disease: from pathology and genetics to potential therapies, Biochem J, 2008; 412(2): 191-209.

  • [13] Kim, S.D., and Fung, V.S., An update on Huntington’s disease: from the gene to the clinic, Current opinion in neurology, 2014; 27(4): 477-483.

  • [14] Andre, V.M., Cepeda, C., and Levine, M.S., Dopamine and glutamate in Huntington’s disease: A balancing act, CNS neuroscience & therapeutics, 2010; 16(3): 163-178.

  • [15] Estrada-Sanchez, A.M., Montiel, T., Segovia, J., and Massieu, L., Glutamate toxicity in the striatum of the R6/2 Huntington’s disease transgenic mice is age-dependent and correlates with decreased levels of glutamate transporters, Neurobiology of disease, 2009; 34(1): 78-86.

  • [16] Heng, M.Y., Detloff, P.J., Wang, P.L., Tsien, J.Z., and Albin, R.L., In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease, J Neurosci, 2009; 29(10): 3200-3205.

  • [17] Bossy-Wetzel, E., Petrilli, A., and Knott, A.B., Mutant huntingtin and mitochondrial dysfunction, Trends in neurosciences, 2008; 31(12): 609-616.

  • [18] Quintanilla, R.A., and Johnson, G.V., Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease, Brain research bulletin, 2009; 80(4-5): 242-247.

  • [19] Browne, S.E., and Beal, M.F., Oxidative damage in Huntington’s disease pathogenesis, Antioxidants & redox signaling, 2006; 8(11-12): 2061-2073.

  • [20] Brustovetsky, N., Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling, Molecular neurobiology, 2015.

  • [21] Yano, H., Baranov, S.V., Baranova, O.V., Kim, J., Pan, Y., Yablonska, S., Carlisle, D.L., Ferrante, R.J., Kim, A.H., and Friedlander, R.M., Inhibition of mitochondrial protein import by mutant huntingtin, Nature neuroscience, 2014; 17(6): 822-831.

  • [22] Brandstaetter, H., Kruppa, A.J., and Buss, F., Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane, Disease models & mechanisms, 2014; 7(12): 1335-1340.

  • [23] Gunawardena, S., and Goldstein, L.S., Polyglutamine diseases and transport problems: deadly traffic jams on neuronal highways, Archives of neurology, 2005; 62(1): 46-51.

  • [24] Trushina, E., Dyer, R.B., Badger, J.D., 2nd, Ure, D., Eide, L., Tran, D.D., Vrieze, B.T., Legendre-Guillemin, V., McPherson, P.S., Mandavilli, B.S., et al., Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro, Molecular and cellular biology, 2004; 24(18): 8195-8209.

  • [25] Becanovic, K., Pouladi, M.A., Lim, R.S., Kuhn, A., Pavlidis, P., Luthi-Carter, R., Hayden, M.R., and Leavitt, B.R., Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis, Hum Mol Genet, 2010; 19(8): 1438-1452.

  • [26] Buckley, N.J., Johnson, R., Zuccato, C., Bithell, A., and Cattaneo, E., The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease, Neurobiology of disease, 2010; 39(1): 28-39.

  • [27] Finkbeiner, S., and Mitra, S., The ubiquitin-proteasome pathway in Huntington’s disease, ScientificWorldJournal, 2008; 8: 421-433.

  • [28] Ortega, Z., Diaz-Hernandez, M., and Lucas, J.J., Is the ubiquitinproteasome system impaired in Huntington’s disease?, Cell Mol Life Sci, 2007; 64(17): 2245-2257.

  • [29] Bennett, E.J., Shaler, T.A., Woodman, B., Ryu, K.Y., Zaitseva, T.S., Becker, C.H., Bates, G.P., Schulman, H., and Kopito, R.R., Global changes to the ubiquitin system in Huntington’s disease, Nature, 2007; 448(7154): 704-708.

  • [30] Hipp, M.S., Patel, C.N., Bersuker, K., Riley, B.E., Kaiser, S.E., Shaler, T.A., Brandeis, M., and Kopito, R.R., Indirect inhibition of 26S proteasome activity in a cellular model of Huntington’s disease, J Cell Biol, 2012; 196(5): 573-587.

  • [31] Tsvetkov, A.S., Arrasate, M., Barmada, S., Ando, D.M., Sharma, P., Shaby, B.A., and Finkbeiner, S., Proteostasis of polyglutamine varies among neurons and predicts neurodegeneration, Nature chemical biology, 2013; 9(9): 586-592.

  • [32] Duennwald, M.L., and Lindquist, S., Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity, Genes Dev, 2008; 22(23): 3308-3319.

  • [33] Yang, H., Liu, C., Zhong, Y., Luo, S., Monteiro, M.J., and Fang, S., Huntingtin interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP, PLoS One, 2010; 5(1): e8905.

  • [34] Benyair, R., Ron, E., and Lederkremer, G.Z., Protein quality control, retention, and degradation at the endoplasmic reticulum, Int Rev Cell Mol Biol, 2011; 292: 197-280.

  • [35] Smith, M.H., Ploegh, H.L., and Weissman, J.S., Road to ruin: targeting proteins for degradation in the endoplasmic reticulum, Science, 2011; 334(6059): 1086-1090.

  • [36] Carnemolla, A., Fossale, E., Agostoni, E., Michelazzi, S., Calligaris, R., De Maso, L., Del Sal, G., MacDonald, M.E., and Persichetti, F., Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease, J Biol Chem, 2009; 284(27): 18167-18173.

  • [37] Reijonen, S., Putkonen, N., Norremolle, A., Lindholm, D., and Korhonen, L., Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins, Exp Cell Res, 2008; 314(5): 950-960.

  • [38] Roussel, B.D., Kruppa, A.J., Miranda, E., Crowther, D.C., Lomas, D.A., and Marciniak, S.J., Endoplasmic reticulum dysfunction in neurological disease, Lancet Neurol, 2013; 12(1): 105-118.

  • [39] Vidal, R., Caballero, B., Couve, A., and Hetz, C., Converging pathways in the occurrence of endoplasmic reticulum (ER) stress in Huntington’s disease, Curr Mol Med, 2011; 11(1): 1-12.

  • [40] Reiner, A., Albin, R.L., Anderson, K.D., D’Amato, C.J., Penney, J.B., and Young, A.B., Differential loss of striatal projection neurons in Huntington disease, Proc Natl Acad Sci U S A, 1988; 85(15): 5733-5737.

  • [41] Roze, E., Cahill, E., Martin, E., Bonnet, C., Vanhoutte, P., Betuing, S., and Caboche, J., Huntington’s Disease and Striatal Signaling, Front Neuroanat, 2011; 5: 55.

  • [42] Subramaniam, S., Sixt, K.M., Barrow, R., and Snyder, S.H., Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity, Science, 2009; 324(5932): 1327-1330.

  • [43] Francelle, L., Galvan, L., Gaillard, M.C., Petit, F., Bernay, B., Guillermier, M., Bonvento, G., Dufour, N., Elalouf, J.M., Hantraye, P., et al., The striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant huntingtin in vivo, Neurobiology of aging, 2015; 36(3): 1601.e1607-1616.

  • [44] Leitman, J., Barak, B., Benyair, R., Shenkman, M., Ashery, U., Hartl, F.U., and Lederkremer, G.Z., ER stress-induced eIF2-alpha phosphorylation underlies sensitivity of striatal neurons to pathogenic huntingtin, PLoS One, 2014; 9(3): e90803.

  • [45] Romisch, K., Endoplasmic reticulum-associated degradation, Annu Rev Cell Dev Biol, 2005; 21: 435-456.

  • [46] Hirsch, C., Gauss, R., Horn, S.C., Neuber, O., and Sommer, T., The ubiquitylation machinery of the endoplasmic reticulum, Nature, 2009; 458(7237): 453-460.

  • [47] Brodsky, J.L., Cleaning Up: ER-Associated Degradation to the Rescue, Cell, 2012; 151(6): 1163-1167.

  • [48] Sommer, T., and Wolf, D.H., The ubiquitin-proteasome-system, Biochim Biophys Acta, 2014; 1843(1): 1.

  • [49] Lederkremer, G.Z., Glycoprotein folding, quality control and ER-associated degradation, Curr Opin Struct Biol, 2009; 19(5): 515-523.

  • [50] Okuda-Shimizu, Y., and Hendershot, L.M., Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp, Mol Cell, 2007; 28(4): 544-554.

  • [51] Forster, M.L., Sivick, K., Park, Y.N., Arvan, P., Lencer, W.I., and Tsai, B., Protein disulfide isomerase-like proteins play opposing roles during retrotranslocation, J Cell Biol, 2006; 173(6): 853-859.

  • [52] Nakatsukasa, K., and Brodsky, J.L., The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum, Traffic, 2008; 9(6): 861-870.

  • [53] Kamhi-Nesher, S., Shenkman, M., Tolchinsky, S., Fromm, S.V., Ehrlich, R., and Lederkremer, G.Z., A novel quality control compartment derived from the endoplasmic reticulum, Mol Biol Cell, 2001; 12(6): 1711-1723.

  • [54] Groisman, B., Shenkman, M., Ron, E., and Lederkremer, G.Z., Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulumassociated degradation steps, J Biol Chem, 2011; 286(2): 1292-1300.

  • [55] Kondratyev, M., Avezov, E., Shenkman, M., Groisman, B., and Lederkremer, G.Z., PERK-dependent compartmentalization of ERAD and unfolded protein response machineries during ER stress, Exp Cell Res, 2007; 313(16): 3395-3407.

  • [56] Leitman, J., Ron, E., Ogen-Shtern, N., and Lederkremer, G.Z., Compartmentalization of Endoplasmic Reticulum Quality Control and ER-Associated Degradation Factors, DNA Cell Biol, 2012.

  • [57] Frenkel, Z., Gregory, W., Kornfeld, S., and Lederkremer, G.Z., Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2, J Biol Chem, 2003; 278(36): 34119-34124.

  • [58] Helenius, A., and Aebi, M., Roles of N-linked glycans in the endoplasmic reticulum, Annu Rev Biochem, 2004; 73: 1019-1049.

  • [59] Avezov, E., Frenkel, Z., Ehrlich, M., Herscovics, A., and Lederkremer, G.Z., Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation, Mol Biol Cell, 2008; 19(1): 216-225.

  • [60] Benyair, R., Ogen-Shtern, N., Mazkereth, N., Shai, B., Ehrlich, M., and Lederkremer, G.Z., Mammalian ER mannosidase I resides in quality control vesicles, where it encounters its glycoprotein substrates, Mol Biol Cell, 2015; 26(2): 172-184.

  • [61] Benyair, R., Ogen-Shtern, N., and Lederkremer, G.Z., Glycan regulation of ER-associated degradation through compartmentalization, Seminars in cell & developmental biology, 2015; 41: 99-109.

  • [62] Hosokawa, N., Tremblay, L.O., Sleno, B., Kamiya, Y., Wada, I., Nagata, K., Kato, K., and Herscovics, A., EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans, Glycobiology, 2010; 20(5): 567-575.

  • [63] Ninagawa, S., Okada, T., Sumitomo, Y., Kamiya, Y., Kato, K., Horimoto, S., Ishikawa, T., Takeda, S., Sakuma, T., Yamamoto, T., et al., EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step, J Cell Biol, 2014; 206(3): 347-356.

  • [64] Olivari, S., Cali, T., Salo, K.E., Paganetti, P., Ruddock, L.W., and Molinari, M., EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation, Biochemical and biophysical research communications, 2006; 349(4): 1278-1284.

  • [65] Ron, E., Shenkman, M., Groisman, B., Izenshtein, Y., Leitman, J., and Lederkremer, G.Z., Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1, Mol Biol Cell, 2011; 22(21): 3945-3954.

  • [66] Wang, X., Herr, R.A., Chua, W.J., Lybarger, L., Wiertz, E.J., and Hansen, T.H., Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3, J Cell Biol, 2007; 177(4): 613-624.

  • [67] Gardner, R.G., Swarbrick, G.M., Bays, N.W., Cronin, S.R., Wilhovsky, S., Seelig, L., Kim, C., and Hampton, R.Y., Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p, J Cell Biol, 2000; 151(1): 69-82.

  • [68] Deak, P.M., and Wolf, D.H., Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation, J Biol Chem, 2001; 276(14): 10663-10669.

  • [69] Kikkert, M., Doolman, R., Dai, M., Avner, R., Hassink, G., van Voorden, S., Thanedar, S., Roitelman, J., Chau, V., and Wiertz, E., Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum, J Biol Chem, 2004; 279(5): 3525-3534.

  • [70] Fang, S., Ferrone, M., Yang, C., Jensen, J.P., Tiwari, S., and Weissman, A.M., The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum, Proc Natl Acad Sci U S A, 2001; 98(25): 14422-14427.

  • [71] Kreft, S.G., Wang, L., and Hochstrasser, M., Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI), J Biol Chem, 2006; 281(8): 4646-4653.

  • [72] Hassink, G., Kikkert, M., van Voorden, S., Lee, S.J., Spaapen, R., van Laar, T., Coleman, C.S., Bartee, E., Fruh, K., Chau, V., et al., TEB4 is a C4HC3 RING finger-containing ubiquitin ligase of the endoplasmic reticulum, Biochem J, 2005; 388(Pt 2): 647-655.

  • [73] Mueller, B., Lilley, B.N., and Ploegh, H.L., SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER, J Cell Biol, 2006; 175(2): 261-270.

  • [74] Lilley, B.N., and Ploegh, H.L., A membrane protein required for dislocation of misfolded proteins from the ER, Nature, 2004; 429(6994): 834-840.

  • [75] Greenblatt, E.J., Olzmann, J.A., and Kopito, R.R., Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum, Nat Struct Mol Biol, 2011; 18(10): 1147-1152.

  • [76] Kokame, K., Agarwala, K.L., Kato, H., and Miyata, T., Herp, a new ubiquitin-like membrane protein induced by endoplasmic reticulum stress, J Biol Chem, 2000; 275(42): 32846-32853.

  • [77] Schulze, A., Standera, S., Buerger, E., Kikkert, M., van Voorden, S., Wiertz, E., Koning, F., Kloetzel, P.M., and Seeger, M., The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway, J Mol Biol, 2005; 354(5): 1021-1027.

  • [78] Leitman, J., Shenkman, M., Gofman, Y., Shtern, N.O., Ben-Tal, N., Hendershot, L.M., and Lederkremer, G.Z., Herp coordinates compartmentalization and recruitment of HRD1 and misfolded proteins for ERAD, Mol Biol Cell, 2014; 25(7): 1050-1060.

  • [79] Bays, N.W., Wilhovsky, S.K., Goradia, A., Hodgkiss-Harlow, K., and Hampton, R.Y., HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins, Mol Biol Cell, 2001; 12(12): 4114-4128.

  • [80] Ye, Y., Meyer, H.H., and Rapoport, T.A., The AAA ATPase Cdc48/ p97 and its partners transport proteins from the ER into the cytosol, Nature, 2001; 414(6864): 652-656.

  • [81] Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N., and Bar-Nun, S., AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation, Mol Cell Biol, 2002; 22(2): 626-634.

  • [82] Zhao, G., Zhou, X., Wang, L., Li, G., Schindelin, H., and Lennarz, W.J., Studies on peptide:N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulumassociated degradation, Proc Natl Acad Sci U S A, 2007; 104(21): 8785-8790.

  • [83] Yoshida, Y., and Tanaka, K., Lectin-like ERAD players in ER and cytosol, Biochimica et biophysica acta, 2010; 1800(2): 172-180.

  • [84] Gardner, B.M., Pincus, D., Gotthardt, K., Gallagher, C.M., and Walter, P., Endoplasmic reticulum stress sensing in the unfolded protein response, Cold Spring Harbor perspectives in biology, 2013; 5(3): a013169.

  • [85] Cao, S.S., and Kaufman, R.J., Unfolded protein response, Curr Biol, 2012; 22(16): R622-626.

  • [86] Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D., Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response, Nat Cell Biol, 2000; 2(6): 326-332.

  • [87] Credle, J.J., Finer-Moore, J.S., Papa, F.R., Stroud, R.M., and Walter, P., On the mechanism of sensing unfolded protein in the endoplasmic reticulum, Proc Natl Acad Sci U S A, 2005; 102(52): 18773-18784.

  • [88] Sidrauski, C., and Walter, P., The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response, Cell, 1997; 90(6): 1031-1039.

  • [89] Tirasophon, W., Welihinda, A.A., and Kaufman, R.J., A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells, Genes & development, 1998; 12(12): 1812-1824.

  • [90] Tsuru, A., Fujimoto, N., Takahashi, S., Saito, M., Nakamura, D., Iwano, M., Iwawaki, T., Kadokura, H., Ron, D., and Kohno, K., Negative feedback by IRE1beta optimizes mucin production in goblet cells, Proceedings of the National Academy of Sciences of the United States of America, 2013; 110(8): 2864-2869.

  • [91] Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G., and Ron, D., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA, Nature, 2002; 415(6867): 92-96.

  • [92] Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K., et al., Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development, Cell, 2001; 107(7): 893-903.

  • [93] Li, H., Korennykh, A.V., Behrman, S.L., and Walter, P., Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering, Proceedings of the National Academy of Sciences of the United States of America, 2010; 107(37): 16113- 16118.

  • [94] Lee, A.H., Iwakoshi, N.N., and Glimcher, L.H., XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response, Mol Cell Biol, 2003; 23(21): 7448-7459.

  • [95] Harding, H.P., Zhang, Y., and Ron, D., Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature, 1999; 397(6716): 271-274.

  • [96] Ishihara, H., Shibasaki, Y., Kizuki, N., Wada, T., Yazaki, Y., Asano, T., and Oka, Y., Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/ substitution analysis of members of this novel lipid kinase family, The Journal of biological chemistry, 1998; 273(15): 8741-8748.

  • [97] Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al., An integrated stress response regulates amino acid metabolism and resistance to oxidative stress, Molecular cell, 2003; 11(3): 619-633.

  • [98] Rutkowski, D.T., and Kaufman, R.J., All roads lead to ATF4, Dev Cell, 2003; 4(4): 442-444.

  • [99] Novoa, I., Zeng, H., Harding, H.P., and Ron, D., Feedback inhibition of the unfolded protein response by GADD34- mediated dephosphorylation of eIF2alpha, J Cell Biol, 2001; 153(5): 1011-1022.

  • [100] Haze, K., Yoshida, H., Yanagi, H., Yura, T., and Mori, K., Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress, Molecular biology of the cell, 1999; 10(11): 3787-3799.

  • [101] Okada, T., Yoshida, H., Akazawa, R., Negishi, M., and Mori, K., Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response, The Biochemical journal, 2002; 366(Pt 2): 585-594.

  • [102] Wu, J., and Kaufman, R.J., From acute ER stress to physiological roles of the Unfolded Protein Response, Cell death and differentiation, 2006; 13(3): 374-384.

  • [103] Senft, D., and Ronai, Z.A., UPR, autophagy, and mitochondria crosstalk underlies the ER stress response, Trends in biochemical sciences, 2015; 40(3): 141-148.

  • [104] Gorman, A.M., Healy, S.J., Jager, R., and Samali, A., Stress management at the ER: regulators of ER stress-induced apoptosis, Pharmacology & therapeutics, 2012; 134(3): 306-316.

  • [105] Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A., Mediators of endoplasmic reticulum stress-induced apoptosis, EMBO reports, 2006; 7(9): 880-885.

  • [106] Zhang, K., and Kaufman, R.J., Identification and characterization of endoplasmic reticulum stress-induced apoptosis in vivo, Methods in enzymology, 2008; 442: 395-419.

  • [107] Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D., CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum, Genes Dev, 2004; 18(24): 3066-3077.

  • [108] Ohoka, N., Yoshii, S., Hattori, T., Onozaki, K., and Hayashi, H., TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death, The EMBO journal, 2005; 24(6): 1243-1255.

  • [109] Harding, H.P., Novoa, I., Bertolotti, A., Zeng, H., Zhang, Y., Urano, F., Jousse, C., and Ron, D., Translational regulation in the cellular response to biosynthetic load on the endoplasmic reticulum, Cold Spring Harb Symp Quant Biol, 2001; 66: 499-508.

  • [110] Boehning, D., Patterson, R.L., Sedaghat, L., Glebova, N.O., Kurosaki, T., and Snyder, S.H., Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calciumdependent apoptosis, Nat Cell Biol, 2003; 5(12): 1051-1061.

  • [111] Simmen, T., Aslan, J.E., Blagoveshchenskaya, A.D., Thomas, L., Wan, L., Xiang, Y., Feliciangeli, S.F., Hung, C.H., Crump, C.M., and Thomas, G., PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis, EMBO J, 2005; 24(4): 717-729.

  • [112] Laude, A.J., and Simpson, A.W., Compartmentalized signalling: Ca2+ compartments, microdomains and the many facets of Ca2+ signalling, FEBS J, 2009; 276(7): 1800-1816.

  • [113] Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R., Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels, Journal of Cell Biology, 2006; 175(6): 901-911.

  • [114] Myhill, N., Lynes, E.M., Nanji, J.A., Blagoveshchenskaya, A.D., Fei, H., Carmine Simmen, K., Cooper, T.J., Thomas, G., and Simmen, T., The subcellular distribution of calnexin is mediated by PACS-2, Mol Biol Cell, 2008; 19(7): 2777-2788.

  • [115] Hayashi, T., Rizzuto, R., Hajnoczky, G., and Su, T.P., MAM: more than just a housekeeper, Trends Cell Biol, 2009; 19(2): 81-88.

  • [116] Higo, T., Hattori, M., Nakamura, T., Natsume, T., Michikawa, T., and Mikoshiba, K., Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44, Cell, 2005; 120(1): 85-98.

  • [117] Roderick, H.L., Lechleiter, J.D., and Camacho, P., Cytosolic phosphorylation of calnexin controls intracellular Ca(2+) oscillations via an interaction with SERCA2b, Journal of Cell Biology, 2000; 149(6): 1235-1248.

  • [118] Li, Y., and Camacho, P., Ca2+-dependent redox modulation of SERCA 2b by ERp57, Journal of Cell Biology, 2004; 164(1): 35-46.

  • [119] John, L.M., Lechleiter, J.D., and Camacho, P., Differential modulation of SERCA2 isoforms by calreticulin, Journal of Cell Biology, 1998; 142(4): 963-973.

  • [120] Li, G., Mongillo, M., Chin, K.T., Harding, H., Ron, D., Marks, A.R., and Tabas, I., Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis, Journal of Cell Biology, 2009; 186(6): 783-792.

  • [121] Gilady, S.Y., Bui, M., Lynes, E.M., Benson, M.D., Watts, R., Vance, J.E., and Simmen, T., Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondriaassociated membrane (MAM), Cell Stress Chaperones, 2010; 15(5): 619-629.

  • [122] Hayashi, T., and Su, T.P., Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival, Cell, 2007; 131(3): 596-610.

  • [123] Hashimoto, K., Sigma-1 receptor chaperone and brain-derived neurotrophic factor: emerging links between cardiovascular disease and depression, Progress in neurobiology, 2013; 100: 15-29.

  • [124] Wang, L., Eldred, J.A., Sidaway, P., Sanderson, J., Smith, A.J., Bowater, R.P., Reddan, J.R., and Wormstone, I.M., Sigma 1 receptor stimulation protects against oxidative damage through suppression of the ER stress responses in the human lens, Mechanisms of ageing and development, 2012; 133(11-12): 665-674.

  • [125] Mitsuda, T., Omi, T., Tanimukai, H., Sakagami, Y., Tagami, S., Okochi, M., Kudo, T., and Takeda, M., Sigma-1Rs are upregulated via PERK/eIF2alpha/ATF4 pathway and execute protective function in ER stress, Biochemical and biophysical research communications, 2011; 415(3): 519-525.

  • [126] Hayashi, T., Tsai, S.Y., Mori, T., Fujimoto, M., and Su, T.P., Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders, Expert opinion on therapeutic targets, 2011; 15(5): 557-577.

  • [127] Nguyen, L., Lucke-Wold, B.P., Mookerjee, S.A., Cavendish, J.Z., Robson, M.J., Scandinaro, A.L., and Matsumoto, R.R., Role of sigma-1 receptors in neurodegenerative diseases, Journal of pharmacological sciences, 2015; 127(1): 17-29.

  • [128] Hall, A.A., Herrera, Y., Ajmo, C.T., Jr., Cuevas, J., and Pennypacker, K.R., Sigma receptors suppress multiple aspects of microglial activation, Glia, 2009; 57(7): 744-754.

  • [129] Marrazzo, A., Caraci, F., Salinaro, E.T., Su, T.P., Copani, A., and Ronsisvalle, G., Neuroprotective effects of sigma-1 receptor agonists against beta-amyloid-induced toxicity, Neuroreport, 2005; 16(11): 1223-1226.

  • [130] Meunier, J., and Hayashi, T., Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB, The Journal of pharmacology and experimental therapeutics, 2010; 332(2): 388-397.

  • [131] Natsvlishvili, N., Goguadze, N., Zhuravliova, E., and Mikeladze, D., Sigma-1 receptor directly interacts with Rac1-GTPase in the brain mitochondria, BMC biochemistry, 2015; 16(1): 11.

  • [132] Hoozemans, J.J., Veerhuis, R., Van Haastert, E.S., Rozemuller, J.M., Baas, F., Eikelenboom, P., and Scheper, W., The unfolded protein response is activated in Alzheimer’s disease, Acta neuropathologica, 2005; 110(2): 165-172.

  • [133] Lee, J.H., Won, S.M., Suh, J., Son, S.J., Moon, G.J., Park, U.J., and Gwag, B.J., Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice, Experimental & molecular medicine, 2010; 42(5): 386-394.

  • [134] Hoozemans, J.J., van Haastert, E.S., Nijholt, D.A., Rozemuller, A.J., Eikelenboom, P., and Scheper, W., The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus, The American journal of pathology, 2009; 174(4): 1241-1251.

  • [135] Chang, R.C., Wong, A.K., Ng, H.K., and Hugon, J., Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer’s disease, Neuroreport, 2002; 13(18): 2429-2432.

  • [136] Mishina, M., Ohyama, M., Ishii, K., Kitamura, S., Kimura, Y., Oda, K., Kawamura, K., Sasaki, T., Kobayashi, S., Katayama, Y., et al., Low density of sigma1 receptors in early Alzheimer’s disease, Annals of nuclear medicine, 2008; 22(3): 151-156.

  • [137] Lee do, Y., Lee, K.S., Lee, H.J., Kim do, H., Noh, Y.H., Yu, K., Jung, H.Y., Lee, S.H., Lee, J.Y., Youn, Y.C., et al., Activation of PERK signaling attenuates Abeta-mediated ER stress, PLoS One, 2010; 5(5): e10489.

  • [138] Seyb, K.I., Ansar, S., Bean, J., and Michaelis, M.L., beta-Amyloid and endoplasmic reticulum stress responses in primary neurons: effects of drugs that interact with the cytoskeleton, J Mol Neurosci, 2006; 28(2): 111-123.

  • [139] Song, S., Lee, H., Kam, T.I., Tai, M.L., Lee, J.Y., Noh, J.Y., Shim, S.M., Seo, S.J., Kong, Y.Y., Nakagawa, T., et al., E2-25K/ Hip-2 regulates caspase-12 in ER stress-mediated Abeta neurotoxicity, J Cell Biol, 2008; 182(4): 675-684.

  • [140] Sato, N., Imaizumi, K., Manabe, T., Taniguchi, M., Hitomi, J., Katayama, T., Yoneda, T., Morihara, T., Yasuda, Y., Takagi, T., et al., Increased production of beta-amyloid and vulnerability to endoplasmic reticulum stress by an aberrant spliced form of presenilin 2, J Biol Chem, 2001; 276(3): 2108-2114.

  • [141] Katayama, T., Imaizumi, K., Honda, A., Yoneda, T., Kudo, T., Takeda, M., Mori, K., Rozmahel, R., Fraser, P., George-Hyslop, P.S., et al., Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer’s disease-linked presenilin-1 mutations, J Biol Chem, 2001; 276(46): 43446- 43454.

  • [142] Milhavet, O., Martindale, J.L., Camandola, S., Chan, S.L., Gary, D.S., Cheng, A., Holbrook, N.J., and Mattson, M.P., Involvement of Gadd153 in the pathogenic action of presenilin-1 mutations, Journal of neurochemistry, 2002; 83(3): 673-681.

  • [143] Bezprozvanny, I., and Mattson, M.P., Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease, Trends in neurosciences, 2008; 31(9): 454-463.

  • [144] Stutzmann, G.E., and Mattson, M.P., Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease, Pharmacological reviews, 2011; 63(3): 700-727.

  • [145] Abisambra, J.F., Jinwal, U.K., Blair, L.J., O’Leary, J.C., 3rd, Li, Q., Brady, S., Wang, L., Guidi, C.E., Zhang, B., Nordhues, B.A., et al., Tau accumulation activates the unfolded protein response by impairing endoplasmic reticulum-associated degradation, J Neurosci, 2013; 33(22): 9498-9507.

  • [146] Jung, E.S., Hong, H., Kim, C., and Mook-Jung, I., Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation, Scientific reports, 2015; 5: 8805.

  • [147] Mercado, G., Castillo, V., Vidal, R., and Hetz, C., ER proteostasis disturbances in Parkinson’s disease: novel insights, Frontiers in aging neuroscience, 2015; 7: 39.

  • [148] Hoozemans, J.J., van Haastert, E.S., Eikelenboom, P., de Vos, R.A., Rozemuller, J.M., and Scheper, W., Activation of the unfolded protein response in Parkinson’s disease, Biochemical and biophysical research communications, 2007; 354(3): 707-711.

  • [149] Smith, W.W., Jiang, H., Pei, Z., Tanaka, Y., Morita, H., Sawa, A., Dawson, V.L., Dawson, T.M., and Ross, C.A., Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity, Hum Mol Genet, 2005; 14(24): 3801-3811.

  • [150] Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K., et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase, Nature genetics, 2000; 25(3): 302-305.

  • [151] Bouman, L., Schlierf, A., Lutz, A.K., Shan, J., Deinlein, A., Kast, J., Galehdar, Z., Palmisano, V., Patenge, N., Berg, D., et al., Parkin is transcriptionally regulated by ATF4: evidence for an interconnection between mitochondrial stress and ER stress, Cell Death Differ, 2011; 18(5): 769-782.

  • [152] Sasaki, S., Endoplasmic reticulum stress in motor neurons of the spinal cord in sporadic amyotrophic lateral sclerosis, Journal of neuropathology and experimental neurology, 2010; 69(4): 346-355.

  • [153] Nishitoh, H., Kadowaki, H., Nagai, A., Maruyama, T., Yokota, T., Fukutomi, H., Noguchi, T., Matsuzawa, A., Takeda, K., and Ichijo, H., ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1, Genes Dev, 2008; 22(11): 1451-1464.

  • [154] Ying, Z., Wang, H., Fan, H., Zhu, X., Zhou, J., Fei, E., and Wang, G., Gp78, an ER associated E3, promotes SOD1 and ataxin-3 degradation, Hum Mol Genet, 2009; 18(22): 4268-4281.

  • [155] Al-Saif, A., Al-Mohanna, F., and Bohlega, S., A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis, Annals of neurology, 2011; 70(6): 913-919.

  • [156] Bernard-Marissal, N., Medard, J.J., Azzedine, H., and Chrast, R., Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration, Brain : a journal of neurology, 2015; 138(Pt 4): 875-890.

  • [157] Fukunaga, K., Shinoda, Y., and Tagashira, H., The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis, Journal of pharmacological sciences, 2015; 127(1): 36-41.

  • [158] Hetz, C., Russelakis-Carneiro, M., Maundrell, K., Castilla, J., and Soto, C., Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein, The EMBO journal, 2003; 22(20): 5435-5445.

  • [159] Moreno, J.A., Radford, H., Peretti, D., Steinert, J.R., Verity, N., Martin, M.G., Halliday, M., Morgan, J., Dinsdale, D., Ortori, C.A., et al., Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration, Nature, 2012; 485(7399): 507-511.

  • [160] Das, I., Krzyzosiak, A., Schneider, K., Wrabetz, L., D’Antonio, M., Barry, N., Sigurdardottir, A., and Bertolotti, A., Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit, Science, 2015; 348(6231): 239-242.

  • [161] Tsaytler, P., Harding, H.P., Ron, D., and Bertolotti, A., Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis, Science, 2011; 332(6025): 91-94.

  • [162] Halliday, M., Radford, H., Sekine, Y., Moreno, J., Verity, N., le Quesne, J., Ortori, C.A., Barrett, D.A., Fromont, C., Fischer, P.M., et al., Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity, Cell Death Dis, 2015; 6: e1672.

  • [163] Cho, K.J., Lee, B.I., Cheon, S.Y., Kim, H.W., Kim, H.J., and Kim, G.W., Inhibition of apoptosis signal-regulating kinase 1 reduces endoplasmic reticulum stress and nuclear huntingtin fragments in a mouse model of Huntington disease, Neuroscience, 2009; 163(4): 1128-1134.

  • [164] Noh, J.Y., Lee, H., Song, S., Kim, N.S., Im, W., Kim, M., Seo, H., Chung, C.W., Chang, J.W., Ferrante, R.J., et al., SCAMP5 links endoplasmic reticulum stress to the accumulation of expanded polyglutamine protein aggregates via endocytosis inhibition, J Biol Chem, 2009; 284(17): 11318-11325.

  • [165] Vidal, R.L., Figueroa, A., Court, F.A., Thielen, P., Molina, C., Wirth, C., Caballero, B., Kiffin, R., Segura-Aguilar, J., Cuervo, A.M., et al., Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy, Hum Mol Genet, 2012; 21(10): 2245-2262.

  • [166] Atwal, R.S., Xia, J., Pinchev, D., Taylor, J., Epand, R.M., and Truant, R., Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity, Hum Mol Genet, 2007; 16(21): 2600-2615.

  • [167] Eisenberg, D., and Jucker, M., The amyloid state of proteins in human diseases, Cell, 2012; 148(6): 1188-1203.

  • [168] Mitra, S., Tsvetkov, A.S., and Finkbeiner, S., Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease, J Biol Chem, 2009; 284(7): 4398-4403.

  • [169] Ortega, Z., Diaz-Hernandez, M., Maynard, C.J., Hernandez, F., Dantuma, N.P., and Lucas, J.J., Acute polyglutamine expression in inducible mouse model unravels ubiquitin/ proteasome system impairment and permanent recovery attributable to aggregate formation, J Neurosci, 2010; 30(10): 3675-3688.

  • [170] Bennett, E.J., Bence, N.F., Jayakumar, R., and Kopito, R.R., Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation, Mol Cell, 2005; 17(3): 351-365.

  • [171] Landwehrmeyer, G.B., Dubois, B., de Yébenes, J.G., Kremer, B., Gaus, W., Kraus, P.H., Przuntek, H., Dib, M., Doble, A., Fischer, W., et al., Riluzole in Huntington’s disease: a 3-year, randomized controlled study, Annals of neurology, 2007; 62(3): 262-272.

  • [172] Miller, J., Arrasate, M., Brooks, E., Libeu, C.P., Legleiter, J., Hatters, D., Curtis, J., Cheung, K., Krishnan, P., Mitra, S., et al., Identifying polyglutamine protein species in situ that best predict neurodegeneration, Nature chemical biology, 2011; 7(12): 925-934.

  • [173] Kouroku, Y., Fujita, E., Jimbo, A., Kikuchi, T., Yamagata, T., Momoi, M.Y., Kominami, E., Kuida, K., Sakamaki, K., Yonehara, S., et al., Polyglutamine aggregates stimulate ER stress signals and caspase-12 activation, Hum Mol Genet, 2002; 11(13): 1505-1515.

  • [174] Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., Inoue, K., Hori, S., Kakizuka, A., and Ichijo, H., ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats, Genes Dev, 2002; 16(11): 1345-1355.

  • [175] Ueda, M., Li, S., Itoh, M., Hayakawa-Yano, Y., Wang, M.X., Hayakawa, M., Hasebe-Matsubara, R., Ohta, K., Ohta, E., Mizuno, A., et al., Polyglutamine expansion disturbs the endoplasmic reticulum formation, leading to caspase-7 activation through Bax, Biochemical and biophysical research communications, 2014; 443(4): 1232-1238.

  • [176] Higo, T., Hamada, K., Hisatsune, C., Nukina, N., Hashikawa, T., Hattori, M., Nakamura, T., and Mikoshiba, K., Mechanism of ER stress-induced brain damage by IP(3) receptor, Neuron, 2010; 68(5): 865-878.

  • [177] Tang, T.S., Tu, H., Chan, E.Y., Maximov, A., Wang, Z., Wellington, C.L., Hayden, M.R., and Bezprozvanny, I., Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1, Neuron, 2003; 39(2): 227-239.

  • [178] Zhang, H., Li, Q., Graham, R.K., Slow, E., Hayden, M.R., and Bezprozvanny, I., Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington’s disease, Neurobiology of disease, 2008; 31(1): 80-88.

  • [179] Hamasaki, M., Furuta, N., Matsuda, A., Nezu, A., Yamamoto, A., Fujita, N., Oomori, H., Noda, T., Haraguchi, T., Hiraoka, Y., et al., Autophagosomes form at ER-mitochondria contact sites, Nature, 2013; 495(7441): 389-393.

  • [180] Miki, Y., Tanji, K., Mori, F., and Wakabayashi, K., Sigma-1 receptor is involved in degradation of intranuclear inclusions in a cellular model of Huntington’s disease, Neurobiology of disease, 2015; 74: 25-31.

  • [181] Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., Cuello, C., Sossin, W., Kaufman, R., Pelletier, J., Rosenblum, K., et al., eIF2alpha phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory, Cell, 2007; 129(1): 195-206.

  • [182] Sidrauski, C., Acosta-Alvear, D., Khoutorsky, A., Vedantham, P., Hearn, B.R., Li, H., Gamache, K., Gallagher, C.M., Ang, K.K., Wilson, C., et al., Pharmacological brake-release of mRNA translation enhances cognitive memory, Elife, 2013; 2: e00498.

  • [183] Godinho, B.M.D.C., Malhotra, M., O’Driscoll, C.M., and Cryan, J.F., Delivering a disease-modifying treatment for Huntington’s disease, Drug Discovery Today, 2015; 20(1): 50-64.

  • [184] Aharony, I., Ehrnhoefer, D.E., Shruster, A., Qiu, X., Franciosi, S., Hayden, M.R., and Offen, D., A Huntingtin-based peptide inhibitor of caspase-6 provides protection from mutant Huntingtin-induced motor and behavioral deficits, Hum Mol Genet, 2015; 24(9): 2604-2614.

  • [185] Ferrante, R.J., Kubilus, J.K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N.W., Ratan, R.R., Luthi-Carter, R., et al., Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice, J Neurosci, 2003; 23(28): 9418-9427.

  • [186] Keene, C.D., Rodrigues, C.M., Eich, T., Chhabra, M.S., Steer, C.J., and Low, W.C., Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington’s disease, Proc Natl Acad Sci U S A, 2002; 99(16): 10671-10676.

  • [187] Wei, H., Kim, S.J., Zhang, Z., Tsai, P.C., Wisniewski, K.E., and Mukherjee, A.B., ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative lysosomal storage disorders and are alleviated by chemical chaperones, Hum Mol Genet, 2008; 17(4): 469-477.

  • [188] Maurice, T., Urani, A., Phan, V.L., and Romieu, P., The interaction between neuroactive steroids and the sigma1 receptor function: behavioral consequences and therapeutic opportunities, Brain research. Brain research reviews, 2001; 37(1-3): 116-132.

  • [189] Ruscher, K., Shamloo, M., Rickhag, M., Ladunga, I., Soriano, L., Gisselsson, L., Toresson, H., Ruslim-Litrus, L., Oksenberg, D., Urfer, R., et al., The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke, Brain : a journal of neurology, 2011; 134(Pt 3): 732-746.

  • [190] Urfer, R., Moebius, H.J., Skoloudik, D., Santamarina, E., Sato, W., Mita, S., and Muir, K.W., Phase II trial of the Sigma-1 receptor agonist cutamesine (SA4503) for recovery enhancement after acute ischemic stroke, Stroke; a journal of cerebral circulation, 2014; 45(11): 3304-3310.

  • [191] Francardo, V., Bez, F., Wieloch, T., Nissbrandt, H., Ruscher, K., and Cenci, M.A., Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism, Brain : a journal of neurology, 2014; 137(Pt 7): 1998-2014.

  • [192] Hyrskyluoto, A., Pulli, I., Tornqvist, K., Ho, T.H., Korhonen, L., and Lindholm, D., Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-kappaB pathway, Cell Death Dis, 2013; 4: e646.

OPEN ACCESS

Journal + Issues

Search