Fabrication of radially aligned electrospun nanofibers in a three-dimensional conical shape

Michel Vong 1  and Norbert Radacsi 1
  • 1 Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King’s Buildings, , Edinburgh, United Kingdom of Great Britain and Northern Ireland

Abstract

This paper reports on the rapid fabrication of radially-aligned, three-dimensional conical structures by electrospinning. Three different polymers, Polyvinylpyrrolidone, Polystyrene and Polyacrylonitrile were used to electrospin the cones. These cone structures are spreading out from a vertical conductive pillar, which can be arbitrarily placed on specific part of the collector. The lower part of the cone is clearly defined on the collector, and the cone has a relatively uniform radius around the pillar. The cones are constituted of fibers that are radially aligned towards the top of the pillar, but there is no apex and the fibers fall flat on the top of the pillar surface. A parametric study has been performed to investigate the effects of the pillar morphology (height and thickness) and the electrospinning parameters (applied voltage and working distance) on the overall shape and size of the cone structure, as well as the fiber alignment. The pillar morphology influences directly the cone diameter and height. The electrospinning parameters have little effect on the cone structure. The formation mechanism has been identified to be related to the shape of the electric field, which has been systematically simulated to understand the effect of the electric field lines on the final dimensions of the cone structure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Xue J, Xie J, LiuW, Xia Y, Electrospun Nanofibers: New Concepts, Materials, and Applications, Acc Chem Res. 50, 2017, 1976.

  • [2] Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY, Electrospun nanofibers: New generation materials for advanced applications, Mater Sci Eng B. 217, 2017, 36.

  • [3] Jian S, Zhu J, Jiang S, Chen S, Fang H, Song Y, et al., Nanofibers with diameter below one nanometer from electrospinning, RSC Adv. 8, 2018, 4794.

  • [4] Katsogiannis KAG, VladisavljevićGT, Georgiadou S, Porous electrospun polycaprolactone (PCL) fibres by phase separation, Eur Polym J. 69, 2015, 284.

  • [5] Huang Z-X, Wu J-W, Wong S-C, Qu J-P, Srivatsan TS, The technique of electrospinning for manufacturing core-shell nanofibers, Mater Manuf Process. 33, 2018, 202.

  • [6] Feltz KP, Kalaf EAG, Chen C, Martin RS, Sell SA, A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size, Electrospinning. 1, 2017, 46.

  • [7] Al-Ajrah S, Lafdi K, Liu Y, Le Coustumer P, Fabrication of ceramic nanofibers using polydimethylsiloxane and polyacrylonitrile polymer blends, J Appl Polym Sci. 135, 2018, 45967.

  • [8] Chen C, Tang Y, Vlahovic B, Yan F, Electrospun Polymer Nanofibers Decoratedwith Noble Metal Nanoparticles for Chemical Sensing, Nanoscale Res Lett. 12, 2017, 451.

  • [9] Zhang C,Wang X, Zhang E, Yang L, Yuan H, TuW, et al., An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering, Acta Biomater. 66, 2018, 141.

  • [10] Pedersbaek D, Frantzen MT, Fojan P, Electrospinning of Core-Shell Fibers for Drug Release Systems, J Self-Assembly Mol Electron. 5, 2017, 17.

  • [11] Alavarse AC, de Oliveira Silva FW, Colque JT, da Silva VM, Prieto T, Venancio EC, et al., Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing, Mater Sci Eng C. 77, 2017, 271.

  • [12] Chou S-F, Woodrow KA, Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends, J Mech Behav Biomed Mater. 65, 2017, 724.

  • [13] Jing L, Shim K, Toe CY, Fang T, Zhao C, Amal R, et al., Electrospun Polyacrylonitrile-Ionic Liquid Nanofibers for Superior PM 2.5 Capture Capacity, ACS ApplMater Interfaces. 8, 2016, 7030.

  • [14] Yousef A, Brooks RM, El-Halwany MM, Abutaleb A, El-Newehy MH, Al-Deyab SS, et al., Electrospun CoCr 7 C 3 -supported C nanofibers: Effective, durable, and chemically stable catalyst for H 2 gas generation from ammonia borane, Mol Catal. 434, 2017, 32.

  • [15] Yang X, Li X, Zhang L, Gong J, Electrospun template directed molecularly imprinted nanofibers incorporated with BiOI nanoflake arrays as photoactive electrode for photoelectrochemical detection of triphenyl phosphate, Biosens Bioelectron. 92, 2017, 61.

  • [16] Mercante LA, Pavinatto A, Iwaki LEO, Scagion VP, Zucolotto V, Oliveira ON, et al., Electrospun Polyamide 6/Poly(allylamine hydrochloride) Nanofibers Functionalized with Carbon Nanotubes for Electrochemical Detection of Dopamine, ACS Appl Mater Interfaces. 7, 2015, 4784.

  • [17] Jindal A, Narayanan H, Basu S, Direct Formic Acid PEM Fuel Cell with Electrospun Carbon Nitride Nanofibers as Cathode Catalyst, Fuel Cells. 17, 2017, 407.

  • [18] Hong S, Hou M, Zhang H, Jiang Y, Shao Z, Yi B, A highperformance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition, Electrochim Acta. 245, 2017, 403.

  • [19] Yu L, Shao Z, Xu L, Wang M, High Throughput Preparation of Aligned Nanofibers Using an Improved Bubble-Electrospinning, Polymers (Basel). 9, 2017, 658.

  • [20] Hwang W, Pang C, Chae H, Fabrication of aligned nanofibers by electric-field-controlled electrospinning: insulating-block method, Nanotechnology. 27, 2016, 435301.

  • [21] Xie J, MacEwan MR, Liu W, Jesuraj N, Li X, Hunter D, et al., Nerve Guidance Conduits Based on Double-Layered Scaffolds of Electrospun Nanofibers for Repairing the Peripheral Nervous System, ACS Appl Mater Interfaces. 6, 2014, 9472.

  • [22] Tamura T, Kawakami H, Aligned Electrospun Nanofiber Composite Membranes for Fuel Cell Electrolytes, Nano Lett. 10, 2010, 1324.

  • [23] Zhu J, Chen L, Xu Z, Lu B, Electrospinning preparation of ultralong aligned nanofibers thin films for high performance fully flexible lithium-ion batteries, Nano Energy. 12, 2015, 339.

  • [24] Sadrjahani M, Gharehaghaji AA, Javanbakht M, Aligned electrospun sulfonated polyetheretherketone nanofiber based proton exchange membranes for fuel cell applications, Polym Eng Sci. 57, 2017, 789.

  • [25] Pauly HM, Kelly DJ, Popat KC, Trujillo NA, Dunne NJ, McCarthy HO, et al., Mechanical properties and cellular response of novel electrospun nanofibers for ligament tissue engineering: Effects of orientation and geometry, J Mech Behav Biomed Mater. 61, 2016, 258.

  • [26] Fee T, Downs C, Eberhardt A, Zhou Y, Berry J, Image-based quantification of fiber alignmentwithin electrospun tissue engineering scaffolds is related to mechanical anisotropy, J Biomed Mater Res Part A. 104, 2016, 1680.

  • [27] Mellor LF, Huebner P, Cai S, Mohiti-Asli M, Taylor MA, Spang J, et al., Fabrication and Evaluation of Electrospun, 3D-Bioplotted, and Combination of Electrospun/3D-Bioplotted Scaffolds for Tissue Engineering Applications, Biomed Res Int. 2017, 2017, 1.

  • [28] Shen C, Wycisk R, Pintauro PN, High performance electrospun bipolar membrane with a 3D junction, Energy Environ Sci. 10, 2017, 1435.

  • [29] Matulevicius J, Kliucininkas L, Martuzevicius D, Krugly E, Tichonovas M, Baltrusaitis J, Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications, J Nanomater. 2014, 2014, 1.

  • [30] Zhang Q, Welch J, Park H, Wu C-Y, Sigmund W, Marijnissen JCM, Improvement in nanofiber filtration by multiple thin layers of nanofiber mats, J Aerosol Sci. 41, 2010, 230.

  • [31] Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, et al., Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning, Acta Biomater. 6, 2010, 1227.

  • [32] Tzezana R, Zussman E, Levenberg S, A Layered Ultra-Porous Scaffold for Tissue Engineering, Created via a Hydrospinning Method, Tissue Eng Part C Methods. 14, 2008, 281.

  • [33] Pham QP, Sharma U, Mikos AG, Electrospun Poly(ε- caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds: Characterization of Scaffolds and Measurement of Cellular Infiltration, Biomacromolecules. 7, 2006, 2796.

  • [34] Cai Y-Z, Zhang G-R, Wang L-L, Jiang Y-Z, Ouyang H-W, Zou X-H, Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering, J Biomed Mater Res Part A. 100A, 2012, 1187.

  • [35] KimMS, Son J, Lee H,Hwang H, Choi CH, Kim G, Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process, Curr Appl Phys. 14, 2014, 1.

  • [36] Moazeni N, Semnani D, Rafeinia M, Hasani H, Naeimi M, Sadrjahani M, The effect of electrospinning parameters on the compliance behavior of electrospun polyurethane tube for artificial common bile duct, Polym Sci Ser A. 59, 2017, 67.

  • [37] Mi H-Y, Jing X, Napiwocki BN, Li Z-T, Turng L-S, Huang H-X, Fabrication of fibrous silica sponges by self-assembly electrospinning and their application in tissue engineering for threedimensional tissue regeneration, Chem Eng J. 331, 2018, 652.

  • [38] Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, et al., Advances in three-dimensional nanofibrous macrostructures via electrospinning, Prog Polym Sci. 39, 2014, 862.

  • [39] Daming Z, Jiang C, Electrospinning of three-dimensional nanofibrous tubes with controllable architectures, Nano Lett. 8, 2008, 3283.

  • [40] Ostrowska B, Jaroszewicz J, Zaczynska E, Tomaszewski W, Swieszkowski W, Kurzydlowski KJ, Evaluation of 3D hybrid microfiber/nanofiber scaffolds for bone tissue engineering, Bull Polish Acad Sci Tech Sci. 62, 2014, 551.

  • [41] Domalik-Pyzik P, Morawska-Chochół A, Chłopek J, Rajzer I, Wrona A, Menaszek E, et al., Polylactide/polycaprolactone asymmetric membranes for guided bone regeneration, EPolymers. 16, 2016, 351.

  • [42] Lowe CJ, Reucroft IM, Grota MC, Shreiber DI, Production of Highly Aligned Collagen Scaffolds by Freeze-drying of Selfassembled, Fibrillar Collagen Gels, ACS Biomater Sci Eng. 2, 2016, 643.

  • [43] McMurtrey RJ, Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control, J Neural Eng. 11, 2014, 66009.

  • [44] Vong M, Speirs E, Klomkliang C, Akinwumi I, Nuansing W, Radacsi N, Controlled three-dimensional polystyrene microand nano-structures fabricated by three-dimensional electrospinning, RSC Adv. 8, 2018, 15501.

  • [45] Xie J, MacEwan MR, Ray WZ, Liu W, Siewe DY, Xia Y, Radially Aligned, Electrospun Nanofibers as Dural Substitutes forWound Closure and Tissue Regeneration Applications, ACS Nano. 4, 2010, 5027.

  • [46] Li X, Li M, Sun J, Zhuang Y, Shi J, Guan D, et al., Radially Aligned Electrospun Fibers with Continuous Gradient of SDF1 for the Guidance of Neural Stem Cells, Small. 12, 2016, 5009.

  • [47] Zhu Y, Cao Y, Pan J, Liu Y, Macro-alignment of electrospun fibers for vascular tissue engineering, J Biomed Mater Res Part B Appl Biomater. 92B, 2009, 508.

  • [48] Theron A, Zussman E, Yarin AL, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology. 12, 2001, 384.

  • [49] Zhou W, Li Z, Zhang Q, Liu Y, Wei F, Luo G, Gas Flow-Assisted Alignment of Super Long Electrospun Nanofibers, J Nanosci Nanotechnol. 7, 2007, 2667.

  • [50] Yang H, Kim S, Huh I, Kim S, Lahiji SF, Kim M, et al., Rapid implantation of dissolving microneedles on an electrospun pillar array, Biomaterials. 64, 2015, 70.

  • [51] Pan C, Han Y, Dong L, Wang J, Gu Z, Electrospinning of Continuous, Large Area, Latticework Fiber onto Two-Dimensional Pinarray Collectors, J Macromol Sci Part B. 47, 2008, 735.

  • [52] Zheng G, Li W, Wang X, Wu D, Sun D, Lin L, Precision deposition of a nanofibre by near-field electrospinning, J Phys D Appl Phys. 43, 2010, 415501.

  • [53] Sharma CS, Katepalli H, Sharma A, Madou M, Fabrication and electrical conductivity of suspended carbon nanofiber arrays, Carbon N Y. 49, 2011, 1727.

  • [54] Chang T-L, Huang C-H, Chou S-Y, Tseng S-F, Lee Y-W, Direct fabrication of nanofiber scaffolds in pillar-based microfluidic device by using electrospinning and picosecond laser pulses, Microelectron Eng. 177, 2017, 52.

  • [55] RAWAT A, MAHAVAR HK, TANWAR A, SINGH PJ, Study of electrical properties of polyvinylpyrrolidone/polyacrylamide blend thin films, Bull Mater Sci. 37, 2014, 273.

  • [56] Qi X-Y, Yan D, Jiang Z, Cao Y-K, Yu Z-Z, Yavari F, et al., Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content, ACS Appl Mater Interfaces. 3, 2011, 3130.

  • [57] Ahmad A, Isa KBM, Osman Z, Conductivity and structural studies of plasticized polyacrylonitrile (PAN)-lithiumtriflate polymer electrolyte films, Sains Malaysiana. 40, 2011, 691.

  • [58] Collins G, Federici J, Imura Y, Catalani LH, Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications, J Appl Phys. 111, 2012, 44701.

OPEN ACCESS

Journal + Issues

The aim of the journal Electrospinning is to bring together research on the various aspects of electrospinning of micro or nano scale fibers, including electrospinning process and modeling, electrospun materials and characterization as well as their diverse applications.

Search