Mass-conserving tempered fractional diffusion in a bounded interval

Anna Lischke 1 , James F. Kelly 2 , and Mark M. Meerschaert 3
  • 1 Division of Applied Mathematics, Brown University, RI 02912, Providence, USA
  • 2 U. S. Naval Research Laboratory, DC 20375, Washington, USA
  • 3 Michigan State University, MI 48824, East Lansing, USA
Anna Lischke, James F. Kelly and Mark M. Meerschaert


Transient anomalous diffusion may be modeled by a tempered fractional diffusion equation. A reflecting boundary condition enforces mass conservation on a bounded interval. In this work, explicit and implicit Euler schemes for tempered fractional diffusion with discrete reflecting or absorbing boundary conditions are constructed. Discrete reflecting boundaries are formulated such that the Euler schemes conserve mass. Conditional stability of the explicit Euler methods and unconditional stability of the implicit Euler methods are established. Analytical steady-state solutions involving the Mittag-Leffler function are derived and shown to be consistent with late-time numerical solutions. Several numerical examples are presented to demonstrate the accuracy and usefulness of the proposed numerical schemes.

  • [1]

    B. Baeumer, M. Kovács, M. M. Meerschaert, H. Sankaranarayanan, Boundary conditions for fractional diffusion. J. of Computational and Applied Mathematics336 (2018), 408–424.

  • [2]

    B. Baeumer, M. Kovács, H. Sankaranarayanan, Fractional partial differential equations with boundary conditions. J. of Differential Equations264 (2018), 1377–1410.

  • [3]

    B. Baeumer, M. M. Meerschaert, Tempered stable Lévy motion and transient superdiffusion. J. of Computational and Applied Mathematics233, No 10 (2010), 2438–2448.

  • [4]

    D. M. Benson, R. Schumer, M. M. Meerschaert, S. W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests. Transport in Porous Media42 (2001), 211–240.

  • [5]

    R. Bruno, L. Sorriso-Valvo, V. Carbone, B. Bavassano, A possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuations. EPL (Europhysics Letters)66, No 1 (2004), 146–152.

  • [6]

    D. del Castillo-Negrete, Fractional diffusion models of nonlocal transport. Physics of Plasmas13 (2006), No 082308; .

    • Crossref
    • Export Citation
  • [7]

    P. Chakraborty, M. M. Meerschaert, C. Y. Lim, Parameter estimation for fractional transport: A particle-tracking approach. Water Resources Research45, No 10 (2009), W10415.

  • [8]

    S. Chen, J. Shen, and L.-L. Wang, Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. J. of Scientific Computing74, No 3 (2018), 1286–1313; .

    • Crossref
    • Export Citation
  • [9]

    M. Dehghan, M. Abbaszadeh, and W. Deng, Fourth-order numerical method for the space–time tempered fractional diffusion-wave equation. Applied Mathematics Letters73 (2017), 120–127.

  • [10]

    W. Deng, B. Li, W. Tian, P. Zhang, Boundary problems for the fractional and tempered fractional operators. Multiscale Modeling & Simulation16, No 1 (2018), 125–149; .

    • Crossref
    • Export Citation
  • [11]

    W. Deng and Z. Zhang, Variational formulation and efficient implementation for solving the tempered fractional problems. Numerical Methods for Partial Differential Equations34, No 4 (2018), 1224–1257; .

    • Crossref
    • Export Citation
  • [12]

    K. Diethelm, The Analysis of Fractional Differential Equations. Springer-Verlag, Berlin (2010).

  • [13]

    B. Dubrulle, J.-P. Laval, Truncated Lévy laws and 2d turbulence. The European Physical J. B - Condensed Matter and Complex Systems4, No 2 (1998), 143–146; .

    • Crossref
    • Export Citation
  • [14]

    V. Ervin, N. Heuer, J. Roop, Regularity of the solution to 1-d fractional order diffusion equations. Mathematics of Computation87 (2018), 2273–2294; .

    • Crossref
    • Export Citation
  • [15]

    R. Fazio, A. Jannelli, S. Agreste, A finite difference method on non-uniform meshes for time-fractional advection-diffusion equations with a source term. Applied Sciences8, No 6 (2018), 960; .

    • Crossref
    • Export Citation
  • [16]

    W. Feller, An Introduction to Probability Theory and Its Applications. 2nd Edition, Vol. II, Wiley, New York (1971).

  • [17]

    R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer Inc., Berlin (2014).

  • [18]

    E. Isaacson, H. Keller, Analysis of Numerical Methods. John Wiley & Sons Inc., New York (1966).

  • [19]

    R. Jha, P. K. Kaw, D. R. Kulkarni, J. C. Parikh, Evidence of Lévy stable process in tokamak edge turbulence. Physics of Plasmas10, No 3 (2003), 699–704.

  • [20]

    J. F. Kelly, D. Bolster, M. M. Meerschaert, J. D. Drummond, A. I. Packman, FracFit: A robust parameter estimation tool for fractional calculus models. Water Resources Research53, No 3 (2017), 2559–2567.

  • [21]

    J. F. Kelly, H. Sankaranarayanan, M. M. Meerschaert, Boundary conditions for two-sided fractional diffusion. J. of Computational Physics376 (2019), 1089–1107.

  • [22]

    A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Vol. 204, Elsevier Science Ltd., Amsterdam (2006).

  • [23]

    C. Li, W. Deng, High order schemes for the tempered fractional diffusion equations. Advances in Computational Mathematics42, No 3 (2016), 543–572.

  • [24]

    C. Li, W. Deng, L. Zhao, Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Discrete & Continuous Dynamical Systems-B24, No 4 (2019), 1989–2015.

  • [25]

    X. Li, Z. Mao, F. Song, H. Wang, and G. E. Karniadakis, A fast solver for spectral element approximation applied to fractional differential equations using hierarchical matrix approximation. arXiv Preprint: arXiv:1808.02937 (Aug. 2018).

  • [26]

    R. N. Mantegna, H. E. Stanley, Scaling behaviour in the dynamics of an economic index. Nature376, No 46 (1995), 46–49.

  • [27]

    M. Meerschaert, A. Sikorskii, Stochastic Models for Fractional Calculus. 2nd Edition, De Gruyter, Berlin (2019).

  • [28]

    M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection–dispersion flow equations. J. of Computational and Applied Mathematics172, No 1 (2004), 65–77.

  • [29]

    M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Applied Numerical Mathematics56, No 1 (2006), 80–90.

  • [30]

    M. M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophysical Research Letters35, No 17 (2008); .

    • Crossref
    • Export Citation
  • [32]

    I. Podlubny, T. Skovranek, I. Petras, V. V. Verbickij, Y. Chen, B. M. V. Jara, Discrete fractional calculus: non-equidistant grids and variable step length. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, (2011), 211–217.

  • [33]

    J. Quintana-Murillo, S. B. Yuste, A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. The European Physical J., Special Topics222, No 8 (2013), 1987–1998; .

    • Crossref
    • Export Citation
  • [34]

    H. Sankaranarayanan, Grünwald-type Approximations and Boundary Conditions for One-sided Fractional Derivative Operators. Ph.D. Thesis, University of Otago (2014).

  • [35]

    R. T. Sibatov, H.-G. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder. Fractal and Fractional3, No 4 (2019), 47.

  • [36]

    J. Sun, D. Nie, W. Deng, Algorithm implementation and numerical analysis for the two-dimensional tempered fractional Laplacian. arXiv Preprint: arXiv:1802.02349 (Feb. 2018).

  • [37]

    M. Veillette, STBL: Alpha stable distributions for MATLAB. MATLAB Central File Exchange, Retrieved October 10, 2018.

  • [38]

    M. Zayernouri, M. Ainsworth, G. E. Karniadakis, Tempered fractional Sturm–Liouville eigenproblems. SIAM J. on Scientific Computing37, No 4 (2015), A1777–A1800; .

    • Crossref
    • Export Citation
  • [39]

    Z. Zhang, W. Deng, H. Fan, Finite difference schemes for the tempered fractional Laplacian. arXiv Preprint: arXiv:1711.05056 (Nov. 2017).

  • [40]

    Z. Zhang, W. Deng, G. E. Karniadakis, A Riesz basis Galerkin method for the tempered fractional Laplacian. SIAM J. on Numerical Analysis56, No 5 (2018), 3010–3039.

  • [41]

    Y. Zhang, C. T. Green, E. M. LaBolle, R. M. Neupauer, H. Sun, Bounded fractional diffusion in geological media: Definition and Lagrangian approximation. Water Resources Research52, No 11 (2016), 8561–8577.

  • [42]

    Y. Zhang, M. M. Meerschaert, B. Baeumer, E. M. LaBolle, Modeling mixed retention and early arrivals in multidimensional heterogeneous media using an explicit Lagrangian scheme. Water Resources Research51, No 8 (2015), 6311–6337.

  • [43]

    Y. Zhang, H.-G. Sun, R. M. Neupauer, P. Straka, J. F. Kelly, B. Lu, C. Zheng, Identification of pollutant source for super-diffusion in aquifers and rivers with bounded domains. Water Resources Research54, No 9 (2018), 7092–7108.

  • [44]

    Y. N. Zhang, Z. Z. Sun, H. L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. of Computational Physics265 (2014), 195–210; .

    • Crossref
    • Export Citation
  • [45]

    Y. Zhang, X. Yu, Xiangnan, X. Li, J. F. Kelly, H.-G. Sun, C. Zheng, Impact of absorbing and reflective boundaries on fractional derivative models: Quantification, evaluation and application. Advances in Water Resources128 (2019), 129–144.

  • [46]

    V. M. Zolotarev, One-Dimensional Stable Distributions. Vol. 65, American Mathematical Soc., Providence (1986).

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues