Refinement of the spectral asymptotics of generalized Krein Feller operators

Uta Freiberg 1
  • 1 Mathematisches Institut, Friedrich-Schiller-Universität, Ernst-Abbé-Platz 1-4, 07743 Jena, Germany.


Spectral asymptotics of operators of the form are investigated. In the case of self-similar measures μ and ν it turns out that the eigenvalue counting function N(x) under both Dirichlet and Neumann conditions behaves like xγ as x → ∞, where the spectral exponent γ is given in terms of the scaling numbers of the measures. More precisely, it holds that

In the present paper, we give a refinement of this spectral result, i.e. we give a sufficient condition under which the term N(x)xγ converges. We show, using renewal theory, that the behaviour of N(x)xγ depends essentially on whether the set of logarithms of the scaling numbers of the measures is arithmetic.

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues

Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.