Cluster tilting vs. weak cluster tilting in Dynkin type A infinity

Thorsten Holm 1  und Peter JÞrgensen 2
  • 1 Institut fĂŒr Algebra, Zahlentheorie und Diskrete Mathematik, FakultĂ€t fĂŒr Mathematik und Physik, Leibniz UniversitĂ€t Hannover, Welfengarten 1, 30167 Hannover, Germany
  • 2 School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom

Abstract

This paper shows a new phenomenon in higher cluster tilting theory. For each positive integer d, we exhibit a triangulated category 𝖱 with the following properties.

On the one hand, the d-cluster tilting subcategories of 𝖱 have very simple mutation behaviour: Each indecomposable object has exactly d mutations. On the other hand, the weakly d-cluster tilting subcategories of 𝖱 which lack functorial finiteness can have much more complicated mutation behaviour: For each 0 ≀ ℓ ≀ d - 1, we show a weakly d-cluster tilting subcategory 𝖳ℓ which has an indecomposable object with precisely ℓ mutations.

The category 𝖱 is the algebraic triangulated category generated by a (d + 1)-spherical object and can be thought of as a higher cluster category of Dynkin type A∞.

Artikel kaufen
Erhalten sie sofort unbegrenzten Zugriff auf den Artikel.
Anmelden
Haben Sie den Zugang bereits erworben? Melden Sie sich bitte an.


oder
Zugriff ĂŒber Ihre Institution

Zeitschrift + Hefte

Suche