A direct computation of the cohomology of the braces operad

Vasily Dolgushev 1  and Thomas Willwacher 2
  • 1 Department of Mathematics, Temple University, Wachman Hall , Rm. 638, 1805 N. Broad St., Philadelphia, PA, 19122, USA
  • 2 Institute of Mathematics, University of Zürich, Winterthurerstraße 190, 8057 Zürich, Switzerland
Vasily Dolgushev and Thomas Willwacher

Abstract

We give a self-contained and purely combinatorial proof of the well-known fact that the cohomology of the braces operad is the operad 𝖦𝖾𝗋 governing Gerstenhaber algebras.

  • [1]

    Berger C. and Fresse B., Combinatorial operad actions on cochains, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 135–174.

    • Crossref
    • Export Citation
  • [2]

    Calaque D. and Willwacher T., Triviality of the higher formality theorem, Proc. Amer. Math. Soc. 143 (2015), no. 12, 5181–5193.

    • Crossref
    • Export Citation
  • [3]

    Deligne P., Letter to V. Drinfeld, M. Gerstenhaber, J. P. May, V. Schechtman and J. Stasheff, unpublished, 1993.

  • [4]

    Dolgushev V. A. and Rogers C. L., Notes on algebraic operads, graph complexes, and Willwacher’s construction, Mathematical Aspects of Quantization, Contemp. Math. 583, American Mathematical Society, Providence (2012), 25–145.

  • [5]

    Dolgushev V. A. and Willwacher T. H., Operadic Twisting – with an application to Deligne’s conjecture, J. Pure Appl. Algebra 219 (2015), no. 5, 1349–1428.

    • Crossref
    • Export Citation
  • [6]

    Drinfeld V. G., On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal ( ¯ / ) ${{\rm Gal}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})}$ (in Russian), Algebra i Analiz 2 (1990), no. 4, 149–181.

  • [7]

    Gerstenhaber M., The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267–288.

    • Crossref
    • Export Citation
  • [8]

    Getzler E., Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology, Quantum Deformations of Algebras and Their Representations (Rehovot 1992), Israel Math. Conf. Proc. 7, Bar-Ilan University, Ramat Gan (1993), 65–78.

  • [9]

    Getzler E. and Jones J. D. S., Operads, homotopy algebra and iterated integrals for double loop spaces, preprint 1994, https://arxiv.org/abs/hep-th/9403055.

  • [10]

    Kaufmann R. M., Operads, moduli of surfaces and quantum algebras, Woods Hole Mathematics, Ser. Knots Everything 34, World Scientific, Hackensack (2004), 133–224.

  • [11]

    Kaufmann R. M., On several varieties of cacti and their relations, Algebr. Geom. Topol. 5 (2005), 237–300.

    • Crossref
    • Export Citation
  • [12]

    Kaufmann R. M., On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra, Topology 46 (2007), no. 1, 39–88.

    • Crossref
    • Export Citation
  • [13]

    Kaufmann R. M. and Schwell R., Associahedra, cyclohedra and a topological solution to the A ${A_{\infty}}$-Deligne conjecture, Adv. Math. 223 (2010), no. 6, 2166–2199.

    • Crossref
    • Export Citation
  • [14]

    Kontsevich M., Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999), no. 1, 35–72.

    • Crossref
    • Export Citation
  • [15]

    Kontsevich M. and Soibelman Y., Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999: Quantization, Deformation, and Symmetries (Dijon 1999), Math. Phys. Stud. 21, Kluwer, Dordrecht (2000), 255–307.

  • [16]

    Lambrechts P. and Volić I., Formality of the little N-disks operad, Mem. Amer. Math. Soc. 230 (2014), no. 1079, 1–116.

  • [17]

    Loday J.-L., Cyclic Homology, Grundlehren Math. Wiss. 301, Springer, Berlin, 1992.

  • [18]

    Loday J.-L. and Vallette B., Algebraic Operads, Grundlehren Math. Wiss. 346, Springer, Berlin, 2012.

  • [19]

    McClure J. E. and Smith J. H., A solution of Deligne’s Hochschild cohomology conjecture, Recent Progress in Homotopy Theory (Baltimore 2000), Contemp. Math. 293, American Mathematical Society, Providence (2002), 153–193.

  • [20]

    McClure J. E. and Smith J. H., Multivariable cochain operations and little n-cubes, J. Amer. Math. Soc. 16 (2003), no. 3, 681–704.

    • Crossref
    • Export Citation
  • [21]

    Ševera P. and Willwacher T., Equivalence of formalities of the little discs operad, Duke Math. J. 160 (2011), no. 1, 175–206.

    • Crossref
    • Export Citation
  • [22]

    Tamarkin D., Another proof of M. Kontsevich formality theorem, preprint 1998, https://arxiv.org/abs/math/9803025.

  • [23]

    Tamarkin D., Formality of chain operad of little discs, Lett. Math. Phys. 66 (2003), no. 1–2, 65–72.

    • Crossref
    • Export Citation
  • [24]

    Tamarkin D., What do DG categories form?, Compos. Math. 143 (2007), no. 5, 1335–1358.

    • Crossref
    • Export Citation
  • [25]

    Weibel C. A., An Introduction to Homological Algebra, Cambridge Stud. Adv. Math. 38, Cambridge University Press, Cambridge, 1994.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


Journal + Issues

Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.

Search