Contractibility of the stability manifold for silting-discrete algebras

David Pauksztello 1 , Manuel Saorín 2 ,  and Alexandra Zvonareva 3
  • 1 Department of Mathematics and Statistics, Lancaster University, LA1 4YF, Lancaster, United Kingdom
  • 2 Departamento de Matemáticas, Universidad de Murcia, Aptdo. 4021, 30100, Espinardo, Spain
  • 3 Chebyshev Laboratory, St. Petersburg State University, 14th Line 29B, St. Petersburg, Russia
David Pauksztello
  • Corresponding author
  • Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Manuel Saorín and Alexandra Zvonareva

Abstract

We show that any bounded t-structure in the bounded derived category of a silting-discrete algebra is algebraic, i.e. has a length heart with finitely many simple objects. As a corollary, we obtain that the space of Bridgeland stability conditions for a silting-discrete algebra is contractible.

  • [1]

    T. Adachi, The classification of two-term tiling complexes for Brauer graph algebras, Proceedings of the 48th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Yamanashi (2016), 1–5.

  • [2]

    T. Adachi, O. Iyama and I. Reiten, τ-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452.

    • Crossref
    • Export Citation
  • [3]

    T. Adachi, Y. Mizuno and D. Yang, Silting-discreteness of triangulated categories and contractibility of stability spaces, preprint (2017), http://arxiv.org/abs/1708.08168.

  • [4]

    T. Aihara, Tilting-connected symmetric algebras, Algebr. Represent. Theory 16 (2013), no. 3, 873–894.

    • Crossref
    • Export Citation
  • [5]

    T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633–668.

    • Crossref
    • Export Citation
  • [6]

    T. Aihara and Y. Mizuno, Tilting complexes over preprojective algebras of Dynkin type, Proceedings of the 47th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Okayama (2015), 14–19.

  • [7]

    L. Angeleri Hügel, F. Marks and J. Vitória, Silting modules, Int. Math. Res. Not. IMRN (2016), no. 4, 1251–1284.

  • [8]

    M. Auslander, Representation theory of Artin algebras. I, Comm. Algebra 1 (1974), 177–268.

    • Crossref
    • Export Citation
  • [9]

    M. Auslander, Representation theory of Artin algebras. II, Comm. Algebra 1 (1974), 269–310.

    • Crossref
    • Export Citation
  • [10]

    A. A. Beĭlinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analysis and Topology on Singular Spaces. I (Luminy 1981), Astérisque 100, Société Mathématique de France, Paris (1982), 5–171.

  • [11]

    A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 (2007), no. 883, 1–207.

  • [12]

    T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345.

    • Crossref
    • Export Citation
  • [13]

    N. Broomhead, D. Pauksztello and D. Ploog, Averaging t-structures and extension closure of aisles, J. Algebra 394 (2013), 51–78.

    • Crossref
    • Export Citation
  • [14]

    N. Broomhead, D. Pauksztello and D. Ploog, Discrete derived categories II: The silting pairs CW complex and the stability manifold, J. Lond. Math. Soc. (2) 93 (2016), no. 2, 273–300.

    • Crossref
    • Export Citation
  • [15]

    S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223–235.

    • Crossref
    • Export Citation
  • [16]

    L. Demonet, O. Iyama and G. Jasso, τ-tilting finite algebras, g-vectors and brick-τ-rigid correspondence, preprint (2015), http://arxiv.org/abs/1503.00285.

  • [17]

    G. Dimitrov, F. Haiden, L. Katzarkov and M. Kontsevich, Dynamical systems and categories, The Influence of Solomon Lefschetz in Geometry and Topology, Contemp. Math. 621, American Mathematical Society, Providence (2014), 133–170.

  • [18]

    G. Dimitrov and L. Katzarkov, Bridgeland stability conditions on the acyclic triangular quiver, Adv. Math. 288 (2016), 825–886.

    • Crossref
    • Export Citation
  • [19]

    L. Fiorot, F. Mattiello and A. Tonolo, A classification theorem for t-structures, J. Algebra 465 (2016), 214–258.

    • Crossref
    • Export Citation
  • [20]

    F. Haiden, L. Katzarkov and M. Kontsevich, Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 247–318.

    • Crossref
    • Export Citation
  • [21]

    D. Happel, I. Reiten and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, 1–88.

  • [22]

    O. Iyama, P. Jø rgensen and D. Yang, Intermediate co-t-structures, two-term silting objects, τ-tilting modules, and torsion classes, Algebra Number Theory 8 (2014), no. 10, 2413–2431.

    • Crossref
    • Export Citation
  • [23]

    B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253.

  • [24]

    A. King and Y. Qiu, Exchange graphs and Ext quivers, Adv. Math. 285 (2015), 1106–1154.

    • Crossref
    • Export Citation
  • [25]

    S. Koenig and D. Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403–438.

  • [26]

    E. Macrì, Stability conditions on curves, Math. Res. Lett. 14 (2007), no. 4, 657–672.

    • Crossref
    • Export Citation
  • [27]

    P. Nicolás, M. Saorín and A. Zvonareva, Silting theory in triangulated categories with coproducts, preprint (2015), http://arxiv.org/abs/1512.04700.

  • [28]

    S. Okada, Stability manifold of 1 {\mathbb{P}}^{1}, J. Algebraic Geom. 15 (2006), no. 3, 487–505.

    • Crossref
    • Export Citation
  • [29]

    A. Polishchuk, Constant families of t-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), no. 1, 109–134, 167.

    • Crossref
    • Export Citation
  • [30]

    C. Psaroudakis and J. Vitória, Realisation functors in tilting theory, Math. Z. 288 (2018), no. 3–4, 965–1028.

    • Crossref
    • Export Citation
  • [31]

    Y. Qiu, Stability conditions and quantum dilogarithm identities for Dynkin quivers, Adv. Math. 269 (2015), 220–264.

    • Crossref
    • Export Citation
  • [32]

    Y. Qiu and J. Woolf, Contractible stability spaces and faithful braid group actions, preprint (2014), http://arxiv.org/abs/1407.5986.

  • [33]

    M. Saorín and J. Šťovíček, On exact categories and applications to triangulated adjoints and model structures, Adv. Math. 228 (2011), no. 2, 968–1007.

    • Crossref
    • Export Citation
  • [34]

    D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 2, London Math. Soc. Stud. Texts 71, Cambridge University Press, Cambridge, 2007.

  • [35]

    J. Woolf, Stability conditions, torsion theories and tilting, J. Lond. Math. Soc. (2) 82 (2010), no. 3, 663–682.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.

Search