𝐿𝑝-estimates for rough bi-parameter Fourier integral operators

  • 1 School of Mathematics and Statistics, Wuhan University, Hubei 430072, Wuhan, P. R. China
  • 2 School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui, P. R. China
Guangqing Wang
  • School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui, 232001, P. R. China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Wenyi Chen
  • Corresponding author
  • School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, P. R. China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

In this paper, we study the Lq-Lr boundedness of bi-parameter Fourier integral operators defined by general rough Hörmander class amplitudes.

  • [1]

    E. Cordero, F. Nicola and L. Rodino, Boundedness of Fourier integral operators on L p {\mathscr{F}}L^{p} spaces, Trans. Amer. Math. Soc. 361 (2009), no. 11, 6049–6071.

    • Crossref
    • Export Citation
  • [2]

    E. Cordero, F. Nicola and L. Rodino, On the global boundedness of Fourier integral operators, Ann. Global Anal. Geom. 38 (2010), no. 4, 373–398.

    • Crossref
    • Export Citation
  • [3]

    S. Coriasco and M. Ruzhansky, On the boundedness of Fourier integral operators on L p ( n ) L^{p}(\mathbb{R}^{n}), C. R. Math. Acad. Sci. Paris 348 (2010), no. 15–16, 847–851.

    • Crossref
    • Export Citation
  • [4]

    W. Dai and G. Lu, L p L^{p} estimates for multi-linear and multi-parameter pseudo-differential operators, Bull. Soc. Math. France 143 (2015), no. 3, 567–597.

    • Crossref
    • Export Citation
  • [5]

    D. Dos Santos Ferreira and W. Staubach, Global and local regularity of Fourier integral operators on weighted and unweighted spaces, Mem. Amer. Math. Soc. 229 (2014), no. 1074, 1–65.

  • [6]

    G. I. Èskin, Degenerate elliptic pseudodifferential equations of principal type, Mat. Sb. (N.S.) 82(124) (1970), 585–628; translation in Math. USSR Sbornik 11 (1970), 539–82.

  • [7]

    R. Fefferman and E. M. Stein, Singular integrals on product spaces, Adv. Math. 45 (1982), no. 2, 117–143.

    • Crossref
    • Export Citation
  • [8]

    Q. Hong and G. Lu, Symbolic calculus and boundedness of multi-parameter and multi-linear pseudo-differential operators, Adv. Nonlinear Stud. 14 (2014), no. 4, 1055–1082.

  • [9]

    Q. Hong and G. Lu, Weighted L p L^{p} estimates for rough bi-parameter Fourier integral operators, J. Differential Equations 265 (2018), no. 3, 1097–1127.

    • Crossref
    • Export Citation
  • [10]

    Q. Hong, G. Lu and L. Zhang, L p L^{p} boundedness of rough bi-parameter Fourier integral operators, Forum Math. 30 (2018), no. 1, 87–107.

    • Crossref
    • Export Citation
  • [11]

    Q. Hong and L. Zhang, L p L^{p} estimates for bi-parameter and bilinear Fourier integral operators, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 2, 165–186.

    • Crossref
    • Export Citation
  • [12]

    L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Singular Integrals (Chicago 1966), Proc. Sympos. Pure Math. 10, American Mathematical Society, Providence (1967), 138–183.

  • [13]

    L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1–2, 79–183.

    • Crossref
    • Export Citation
  • [14]

    J.-L. Journé, Calderón–Zygmund operators on product spaces, Rev. Mat. Iberoam. 1 (1985), no. 3, 55–91.

  • [15]

    G. Lu and L. Zhang, Bi-parameter and bilinear Calderón–Vaillancourt theorem with subcritical order, Forum Math. 28 (2016), no. 6, 1087–1094.

  • [16]

    S. Rodríguez-López and W. Staubach, Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators, J. Funct. Anal. 264 (2013), no. 10, 2356–2385.

    • Crossref
    • Export Citation
  • [17]

    A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. (2) 134 (1991), no. 2, 231–251.

    • Crossref
    • Export Citation
  • [18]

    C. D. Sogge, Fourier integrals in classical analysis, 2nd ed., Cambridge Tracts in Math. 210, Cambridge University, Cambridge, 2017.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.

Search