Germanium Plasmon Enhanced Resonators for Label-Free Terahertz Protein Sensing

Maximilian Bettenhausen 1 , Friedhard Römer 1 , Bernd Witzigmann 1 , Julia Flesch 2 , Rainer Kurre 2 , Sergej Korneev 2 , Jacob Piehler 2 , Changjiang You 2 , Marcin Kazmierczak 3 , Subhajit Guha 3 , Giovanni Capellini 3 ,  and Thomas Schröder 3
  • 1 Electrical Engineering/Computer Science Dept. and CINSaT, University of Kassel, Kassel, Germany
  • 2 Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
  • 3 IHP, Frankfurt (Oder), Germany
Maximilian Bettenhausen
  • Electrical Engineering/Computer Science Dept. and CINSaT, University of Kassel, Kassel, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Friedhard Römer
  • Electrical Engineering/Computer Science Dept. and CINSaT, University of Kassel, Kassel, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Bernd Witzigmann
  • Corresponding author
  • Electrical Engineering/Computer Science Dept. and CINSaT, University of Kassel, Kassel, Germany
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Julia Flesch, Rainer Kurre, Sergej Korneev, Jacob Piehler, Changjiang You, Marcin Kazmierczak, Subhajit Guha, Giovanni Capellini and Thomas Schröder

Abstract

A Terahertz protein sensing concept based on subwavelength Ge resonators is presented. Ge bowtie resonators, compatible with CMOS fabrication technology, have been designed and characterized with a resonance frequency of 0.5 THz and calculated local intensity enhancement of 10.000. Selective biofunctionalization of Ge resonators on Si wafer was achieved in one step using lipoic acid-HaloTag ligand (LA-HTL) for biofunctionalization and passivation. The results lay the foundation for future investigation of protein tertiary structure and the dynamics of protein hydration shell in response to protein conformation changes.

    • Supplementary Material Details
  • [1]

    H.-J. Wu, et al., “Membrane-protein binding measured with solution-phase plasmonic nanocube sensors,” Nat. Methods, vol. 9, pp. 1189, 2012.

    • Crossref
    • PubMed
    • Export Citation
  • [2]

     M. Bhagawati, C. You, and J. Piehler, “Quantitative real-time imaging of protein–Protein interactions by LSPR detection with micropatterned gold nanoparticles,” Anal. Chem., vol. 85, no. 20, pp. 9564–9571, 2013.

    • Crossref
    • PubMed
    • Export Citation
  • [3]

    A. Tsuboi, K. Nakamura, and N. Kobayashi, “A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles,” Advanced Mater., vol. 25, no. 23, pp. 3197–3201, 2013.

    • Crossref
    • Export Citation
  • [4]

    P. Chen, et al., “Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays,” ACS Nano, vol. 9, no. 4, pp. 4173–4181, 2015.

    • Crossref
    • PubMed
    • Export Citation
  • [5]

    Y. Song, et al., “AC electroosmosis-enhanced nanoplasmofluidic detection of ultralow-concentration cytokine,” Nano Lett., vol. 17, no. 4, pp. 2374–2380, 2017.

    • Crossref
    • PubMed
    • Export Citation
  • [6]

     G. Klenkar, et al., “Piezo dispensed microarray of multivalent chelating thiols for dissecting complex protein-protein interactions,” Anal. Chem., vol. 78, pp. 3643–3650, 2006.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

     M. Piliarik, M. Bockova, and J. Homola, “Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma,” Biosens Bioelectron, vol. 26, no. 4, pp. 1656–1661, 2010.

    • Crossref
    • PubMed
    • Export Citation
  • [8]

    X. Yu, D. Xu, and Q. Cheng, “Label-free detection methods for protein microarrays,” Proteomics, vol. 6, no. 20, pp. 5493–5503, 2006.

    • Crossref
    • PubMed
    • Export Citation
  • [9]

    T. Kumeria, et al., “Label-free reflectometric interference microchip biosensor based on nanoporous alumina for detection of circulating tumour cells,” Biosens. Bioelectron., vol. 35, no. 1, pp. 167–173, 2012.

    • Crossref
    • PubMed
    • Export Citation
  • [10]

     G. Gauglitz, “Multiple reflectance interference spectroscopy measurements made in parallel for binding studies,” Rev. Sci. Instruments, vol. 76, no. 6, pp. 062224, 2005.

    • Crossref
    • Export Citation
  • [11]

    R. Adato, et al., “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci., vol. 106, no. 46, pp. 19227–19232, 2009.

    • Crossref
    • Export Citation
  • [12]

    X. Jiang, et al., “Resolving voltage-dependent structural changes of a membrane photoreceptor by surface-enhanced IR difference spectroscopy,” Proc. Natl. Acad. Sci., vol. 105, no. 34, pp. 12113–12117, 2008.

    • Crossref
    • Export Citation
  • [13]

    K. Ataka, S. T. Stripp, and J. Heberle, “Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins,” Biochimica Et Biophysica Acta (BBA) - Biomembranes, vol. 1828, no. 10, pp. 2283–2293, 2013.

    • Crossref
    • Export Citation
  • [14]

    D. Rodrigo, et al., “Mid-infrared plasmonic biosensing with graphene,” Science, vol. 349, no. 6244, pp. 165–168, 2015.

    • Crossref
    • PubMed
    • Export Citation
  • [15]

    R. Balu, et al., “Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences,” Biophys. J., vol. 94, no. 8, pp. 3217–3226, 2008.

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    S. E. Whitmire, et al., “Protein flexibility and conformational state: A comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J., vol. 85, no. 2, pp. 1269–1277, 2003.

    • Crossref
    • Export Citation
  • [17]

    S. Ebbinghaus, et al., “An extended dynamical hydration shell around proteins,” Proc. Natl. Acad. Sci. U.S.A., vol. 104, no. 52, pp. 20749–20752, 2007.

    • Crossref
    • PubMed
    • Export Citation
  • [18]

    D. M. Leitner, M. Gruebele, and M. Havenith, “Solvation dynamics of biomolecules: Modeling and terahertz experiments,” Hfsp J, vol. 2, no. 6, pp. 314–323, 2008.

    • Crossref
    • PubMed
    • Export Citation
  • [19]

    S. Ebbinghaus, et al., “Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy,” J. Am. Chem. Soc., vol. 130, no. 8, pp. 2374–2375, 2008.

    • Crossref
    • PubMed
    • Export Citation
  • [20]

    S. J. Kim, et al., “Real-time detection of protein-water dynamics upon protein folding by terahertz absorption spectroscopy,” Angew. Chem. Int. Ed. Engl., vol. 47, no. 34, pp. 6486–6489, 2008.

    • Crossref
    • PubMed
    • Export Citation
  • [21]

     L. Baldassarre, et al., “Midinfrared plasmon-enhanced spectroscopy with germanium antennas on silicon substrates,” Nano Lett., vol. 15, no. 11, pp. 7225–7231, 2015.

    • Crossref
    • PubMed
    • Export Citation
  • [22]

    A. Berrier, et al., “Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas,” Opt. Express, vol. 18, no. 22, pp. 23226, 2010.

    • Crossref
    • PubMed
    • Export Citation
  • [23]

    V. Conti Nibali and M. Havenith, “New insights into the role of water in biological function: Studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations,” J. Am. Chem. Soc., vol. 136, no. 37, pp. 12800–12807, 2014.

    • Crossref
    • PubMed
    • Export Citation
  • [24]

     G. V. Los, et al., “HaloTag: A novel protein labeling technology for cell imaging and protein analysis,” ACS Chem. Biol., vol. 3, no. 6, pp. 373–382, 2008.

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    J. Lloyd-Hughes and T.-I. Jeon, “A review of the terahertz conductivity ofbulk and nano–Materials,” J. Infrared, Millimetre Terahertz Waves, vol. 4, pp. 1–54, 2012.

  • [26]

    J. Frigerio, et al., “Tunability of the dielectric function of heavily doped germanium thin films for mid-infrared plasmonics,” Phys. Rev. B, vol. 94, no. 8, pp. 085202, 2016.

    • Crossref
    • Export Citation
  • [27]

    H. Liebe, A. Hufford, and T. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millimeter Waves, vol. 12, pp. 659–675, 1991.

    • Crossref
    • Export Citation
  • [28]

    P. Glancy, “Concentration-dependent effects on fully hydrated DNA at terahertz frequencies,” J Biol Phys, vol. 41, no. 3, pp. 247–256, 2015.

    • Crossref
    • PubMed
    • Export Citation
  • [29]

    D. Wang, et al., “Surface chemistry and electrical properties of germanium nanowires,” J. Am. Chem. Soc., vol. 126, no. 37, pp. 11602–11611, 2004.

    • Crossref
    • PubMed
    • Export Citation
  • [30]

    J. Schartner, et al., “Immobilization of proteins in their physiological active state at functionalized thiol monolayers on ATR-germanium crystals,” Chem. Bio. Chem., vol. 15, no. 17, pp. 2529–2534, 2014.

    • Crossref
    • Export Citation
  • [31]

    Q. Cai, et al., “1-Dodecanethiol based highly stable self-assembled monolayers for germanium passivation,” Appl. Surf. Sci., vol. 353, pp. 890–901, 2015.

    • Crossref
    • Export Citation
  • [32]

    J. S. Kachian, et al., “Disulfide passivation of the Ge(100)-2×1 surface,” Langmuir, vol. 27, no. 1, pp. 179–186, 2011.

    • Crossref
    • Export Citation
  • [33]

     G. Collins, et al., “Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100),” Langmuir, vol. 30, no. 47, pp. 14123–14127, 2014.

    • Crossref
    • PubMed
    • Export Citation
  • [34]

    W. M. Klesse, et al., “Preparation of the Ge(001) surface towards fabrication of atomic-scale germanium devices,” Nanotechnology, vol. 22, no. 14, pp. 154604, 2011.

  • [35]

    S. Löchte, et al., “Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane,” J. Cell Biol., vol. 207, no. 3, pp. 407–418, 2014.

    • Crossref
    • PubMed
    • Export Citation
  • [36]

    T. Wedeking, et al., “Spatiotemporally controlled reorganization of signaling complexes in the plasma membrane of living cells,” Small, vol. 11, no. 44, pp. 5912–5918, 2015.

    • Crossref
    • PubMed
    • Export Citation
  • [37]

    T. Wedeking, et al., “Single cell GFP-trap reveals stoichiometry and dynamics of cytosolic protein complexes,” Nano Lett., vol. 15, no. 5, pp. 3610–3615, 2015.

    • Crossref
    • PubMed
    • Export Citation
  • [38]

    C. You and J. Piehler, “Multivalent chelators for spatially and temporally controlled protein functionalization,” Anal. Bioanal. Chem., vol. 406, no. 14, pp. 3345–3357, 2014.

    • Crossref
    • PubMed
    • Export Citation
  • [39]

    J. Piehler, et al., “Protein interactions in covalently attached dextran layers,” Colloids and Surfaces B-Biointerfaces, vol. 13, no. 6, pp. 325–336, 1999.

    • Crossref
    • Export Citation
  • [40]

    S. Lofas and B. Johnsson, “A novel hydrogel matrix on gold surfaces in surface-plasmon resonance sensors for fast and efficient covalent immobilization of ligands,” J. Chem. Society-Chemical Commun., vol. 0, no. 21, pp. 1526–1528, 1990.

  • [41]

    A. Larsson, et al., “Photografted poly(ethylene glycol) matrix for affinity interaction studies,” Biomacromolecules, vol. 8, no. 1, pp. 287–295, 2007.

    • Crossref
    • PubMed
    • Export Citation
  • [42]

    J. Schartner, et al., “Chemical functionalization of germanium with dextran brushes for immobilization of proteins revealed by attenuated total reflection fourier transform infrared difference spectroscopy,” Anal. Chem., vol. 87, no. 14, pp. 7467–7475, 2015.

    • Crossref
    • PubMed
    • Export Citation
  • [43]

     F. Roemer, et al., “Investigation of the purcell effect in photonic crystal cavities with a 3D finite element maxwell solver,” Opt. Quantum Electron., vol. 39, no. 4, pp. 341–352, 2007.

    • Crossref
    • Export Citation
  • [44]

    D. Lisse, et al., “Selective targeting of fluorescent nanoparticles to proteins inside live cells,” Angew. Chem. Int. Ed. Engl., vol. 50, no. 40, pp. 9352–9355, 2011.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The major aim of Frequenz is to highlight current research activities and development efforts in RF/Microwave Engineering, Photonics and Communications across a wide frequency spectrum, from radio and microwave frequencies via THz and infrared to optical frequencies.

Search